航天推进技术研究院主办
WU Yue,LIU Yang,NI Zheng,et al.Numerical simulation and analysis of nozzle with radial defect in solid rocket motor[J].Journal of Rocket Propulsion,2022,48(04):21-28.
固体火箭发动机含径向缺陷喷管数值仿真分析
- Title:
- Numerical simulation and analysis of nozzle with radial defect in solid rocket motor
- 文章编号:
- 1672-9374(2022)04-0021-08
- 分类号:
- V435.14
- 文献标志码:
- A
- 摘要:
- 火箭发动机喷管的工作环境极为恶劣,固体火箭发动机在热试状态下经常会出现因喷管喉衬加工过程中的工艺缺陷导致的开裂失效事故。针对某型固体火箭发动机试车后喷管喉衬断裂现象,基于真实裂纹形貌进行建模,并开展发动机典型工作时刻下的三维两相数值模拟,旨在获得喷管喉衬不同断裂间隙内流场温度、压强、热流密度与速度场分布及对比情况。研究结果表明:喷管喉衬断裂间隙中温度远高于喷管内流场中的温度,间隙较大处压强高于间隙较小处,燃气进入断裂间隙后速度迅速降低,且在间隙中形成多处回流,凝相粒子主要集中在中央流道,没有凝相粒子进入断裂间隙,靠近喷管壁面断裂根部热流密度最高。
- Abstract:
- The working environment of rocket engine nozzle is extremely harsh.Under the hot fire test of solid rocket motor, the cracking and failure accidents often occur due to the technological defects of the nozzle insert.In this paper, aiming at the fracture phenomenon of the nozzle throat insert after the test of a certain solid rocket engine, the model was built based on the real crack morphology, and three-dimensional two-phase numerical simulation was carried out under the typical working time of the engine.The purpose was to obtain the distribution and comparison of the temperature, pressure, heat flux and velocity field in different fracture gaps of the nozzle throat insert.The research results show that the temperature in the nozzle throat insert fracture gap is much higher than the temperature in the flow field inside the nozzle, and the pressure in the larger gap is higher than that in the smaller gap.After the gas enters the fracture gap, its speed decreases rapidly and multiple backflows are formed in the gap.The condensed-phase particles are mainly concentrated in the central flow channel and no condensed phase particles enter into the fracture gap, and the heat flux is the highest near the fracture root of the nozzle wall.
参考文献/References:
[1] KORTE J J,SALAS A O,DUNN H J,et al.Multidisciplinary approach to linear aerospike nozzle design[J].Journal of Propulsion and Power,2001,17(1):93-98.
[2] 职世君,孙冰,张建伟.固体推进剂复合型裂纹扩展数值计算[J].固体火箭技术,2011,34(1):28-31.
[3] 查柏林,黄定园,乔素磊,等.C/C复合材料烧蚀试验及烧蚀机理研究[J].固体火箭技术,2013,36(5):692-696.
[4] SU J M,ZHOU S J,XUE N J,et al.RETRACTED:Effect of nozzle thermal environment on the ablation rate of the throat inserts of solid rocket motors[J].New Carbon Materials,2018,33(5):442-448.
[5] 严博燕,吕江彦,刘元敏.固体火箭发动机喷管扩张段壳体结构优化设计[J].火箭推进,2019,45(3):54-58.
YAN B Y,LYU J Y,LIU Y M.Optimal design on solid rocket motor nozzle divergent cone[J].Journal of Rocket Propulsion,2019,45(3):54-58.
[6] 李媛,孙展鹏,周艳青,等.某固体火箭发动机药柱温度场有限元分析[J].火箭推进,2019,45(2):32-35.
LI Y,SUN Z P,ZHOU Y Q,et al.Finite element analysis of grain temperature field for a solid rocket motor[J].Journal of Rocket Propulsion,2019,45(2):32-35.
[7] KUMAR R R,VINOD G,RENJITH S,et al.Thermo-structural analysis of composite structures[J].Materials Science and Engineering:A,2005,412(1/2):66-70.
[8] MOROZOV E V,DE LA BEAUJARDIERE J F P P.Numerical simulation of the dynamic thermostructural response of a composite rocket nozzle throat[J].Composite Structures,2009,91(4):412-420.
[9] KEARNEY W,MOSS J.Advanced solid rocket motor nozzle development status[C]//29th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1993.
[10] EVANS B,KUO K,FERRARA P,et al.Nozzle throat erosion characterization study using a solid-propellant rocket motor simulator[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2007.
[11] Anon.Spiral erosion and impact marks on nozzle inlet rings[Z].1993.
[12] 任海峰,高鸣.固体火箭发动机含裂纹药柱应力场有限元模拟的新方法[J].固体火箭技术,2015,38(1):50-54.
[13] 李记威,房雷,李晔鑫,等.含气孔装药固体火箭发动机结构完整性分析[J].航空兵器,2015,22(4):24-27.
[14] MEHTA R C,SURCSH K,NARAYANA R,et al.Thermal stress analysis of a solid rocket motor nozzle throat insert using finite element method[J].Indian Journal of Engineering & Materials Sciences,1998,5(5):271-277.
[15] 姬晋卿,王浩.点火具能量释放过程数值仿真分析[J].兵器装备工程学报,2018,39(10):63-68.
[16] 刘洋,何国强,李江,等.过载条件下长尾喷管发动机三维两相流场数值研究[J].弹箭与制导学报,2006,26(S2):421-424.
[17] 凌江,徐义华,孙海俊,等.燃气喷射角度对含硼固体火箭超燃冲压发动机补燃室燃烧效率的影响[J].火箭推进,2022,48(1):69-75.
LING J,XU Y H,SUN H J,et al.Effect of gas injection angle on combustion efficiency of secondary combustion chamber for solid rocket scramjet containing boron[J].Journal of Rocket Propulsion,2022,48(1):69-75.
[18] 任蒙飞,席文雄,罗世彬,等.粉末燃料冲压发动机头部组织掺混流动数值模拟[J].火箭推进,2020,46(5):35-41.
REN M F,XI W X,LUO S B,et al.Numerical simulation of mixing flow in the head of powder fuel ramjet[J].Journal of Rocket Propulsion,2020,46(5):35-41.
[19] 王志琴,胡春波,李孟哲,等.金属粉末燃烧装置凝相产物反弹特性实验研究[J].推进技术,2021,42(11):2538-2545.
[20] 田维平,许团委,王健儒.过载下燃烧室粒子特性与绝热层烧蚀研究进展[J].固体火箭技术,2015,38(1):30-36.
备注/Memo
收稿日期:2022-03-22 修回日期:2022-04-19
基金项目:国家自然科学基金(51876177)
作者简介:武越(1990—),男,硕士,工程师,研究领域为火箭发动机设计。