航天推进技术研究院主办
LI Yuanqi,ZHAO Xiaohui,CHEN Hongyu,et al.Time domain distributed parameter system dynamic model of combustion components[J].Journal of Rocket Propulsion,2022,48(04):29-35.
燃烧组件时域分布参数系统动力学模型
- Title:
- Time domain distributed parameter system dynamic model of combustion components
- 文章编号:
- 1672-9374(2022)04-0029-07
- Keywords:
- liquid rocket engine combustion components distributed parameter method nonlinear time domain model
- 分类号:
- V433.9
- 文献标志码:
- A
- 摘要:
- 液体火箭发动机的动态特性,特别是与燃烧组件相关的系统动力学特性,一直是理论研究和工程设计中重要的研究内容。在时域上建立了非线性分布参数燃烧组件动力学模型。将时域的频率研究范围从低频扩充到涵盖一阶纵向声学频率的中高频范围。采用了时空分离的方法对模型进行数值求解,采用ROE格式对模型进行空间离散,采用Dassl隐式变步长格式进行时间离散,解决了刚性偏微分方程难以求解的问题。线性热源算例验证表明,该模型能够得到正确的气路稳态解 含熵波和声波的气路算例验证表明,该模型能够准确地反映低频熵波和高频声波特性,且能够准确地描述高频下的熵波耗散现象。
- Abstract:
- The dynamic characteristics of liquid rocket engines, especially the system dynamics characteristics related to combustion components, have always been an important research content in theoretical research and engineering design.In this paper, the dynamic model of nonlinear distributed parameter combustion module was established in time domain.The research range of frequency in the time domain was extended from low frequency to middle and high frequency which covers the first order longitudinal acoustic frequency.The numerical solution of the model was carried out by the method of space and time separation, the model was spatially discretized by the ROE scheme, and the time discretized by the Dassl implicit variable step size scheme.So the problem of rigid partial differential equation was solved.Examples of passive isocross section, passive variable cross section and linear heat source show that the correct steady-state solution of gas path and basically capture the discontinuous characteristics of flow field can be obtained by the model.The gas-path examples of entropy wave and sound wave show that the characteristics of low-frequency entropy wave and high-frequency sound wave can accurately be reflected by the model.The dissipation phenomenon of entropy wave at high frequency can also be described.
参考文献/References:
[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[2] 黄敏超,刘昆,邢宝玉.液体火箭发动机动态性能分析[M].长沙:国防科技大学出版社,2015.
[3] 克洛克,程心一.液体火箭发动机燃烧不稳定性理论[M].张逸民,译.北京:国防工业出版社,1965.
[4] 刘昆,张育林.一维可压缩流的有限元状态空间模型[J].推进技术,1999,20(5):62-66.
[5] 刘昆,张育林.液体火箭发动机燃烧室的一种分区模型[J].航空动力学报,2002,17(1):135-139.
[6] 程谋森.液氢液氧发动机预冷与起动过程模型及PVM仿真研究[D].长沙:国防科学技术大学,2000.
[7] 刘上,刘红军,陈宏玉.富氧燃气发生器动态特性分析[J].航空动力学报,2013,28(1):226-232.
[8] 刘上,刘红军,陈宏玉.液体火箭发动机热力组件动力学模型[J].宇航学报,2012,33(10):1512-1518.
[9] 刘敬华,凌文辉,刘兴洲,等.超音速燃烧室性能非定常准一维流数值模拟[J].推进技术,1998,19(1):1-6.
[10] 王兰,邢建文,郑忠华,等.超燃冲压发动机内流性能的一维评估[J].推进技术,2008,29(6):641-645.
[11] 牛东圣,侯凌云,潘鹏飞.不同燃料超声速燃烧室准一维计算模型[J].清华大学学报(自然科学版),2013,53(4):567-572.
[12] 吕翔.火箭基组合循环(RBCC)发动机性能分析模型研究[D].西安:西北工业大学,2005.
[13] FREZZOTTI M L,NASUTI F,HUANG C,et al.Extraction of response function from numerical simulations and their use for longitudinal combustion intsbility modeling[C]//55th AIAA Aerospace Sciences Meeting.Reston,Virginia:AIAA,2017.
[14] FREZZOTTI M L,NASUTI F,HUANG C,et al.Response function modeling in the study of longitudinal combustion instability by a quasi-1D eulerian solver[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2015.
[15] DALESSANDRO S,FREZZOTTI M L,FAVINI B,et al.A multi-dimensional approach for low order modeling of combustion instability in a rocket combustor[C]//2018 Joint Propulsion Conference.Reston,Virginia:AIAA,2018.
[16] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
[17] MOHANRAJ R,NEUMEIER Y,ZINN B.Modification of Roes Riemann solver for the Euler equations with source terms[C]//34th Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,1996.
[18] 徐绪海,朱方生.刚性微分方程的数值方法[M].武汉:武汉大学出版社,1997.
[19] PETZOLD L R.Description of DASSL:A differential/algebraic system solver[M].Livermore,CA:Sandia National Labs,1982.
[20] 格列克曼.液体火箭发动机自动调节[M].顾明初,郁明桂,邱明煜,译.北京:宇航出版社,1995.
备注/Memo
收稿日期:2021-12-13 修回日期:2022-01-23
基金项目:国家重点实验室基金(6142704180308)
作者简介:李元启(1987—),男,博士,工程师,研究领域为液体火箭发动机系统动力学。