航天推进技术研究院主办
XU Dengwei,ZHU Jianguo,LUO Daliang,et al.Failure analysis and improvement of the ball-end wear for pressure reducing valve[J].Journal of Rocket Propulsion,2022,48(04):81-87.
减压阀球头磨损故障分析及改进
- Title:
- Failure analysis and improvement of the ball-end wear for pressure reducing valve
- 文章编号:
- 1672-9374(2022)04-0081-07
- 关键词:
- 减压阀 球头磨损 机理分析 故障
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 针对某型减压阀主弹簧座球头磨损的问题,利用仿真和试验相结合的方法,分析了减压阀球头磨损的故障机理,计算了不锈钢2Cr13不同硬度组合下球头的应力与应变,结果表明现有结构存在应力超高的问题。同时对金属材料配对副磨损进行研究,从减小接触应力和避免黏附磨损的改进思路出发,提出了改进措施,通过磨损对比试验验证,确定了减压阀的最终改进方案。经过减压阀多个批次试验考核,球头磨损的问题得到彻底解决,验证了改进措施的有效性。研究结果表明,在接触应力未超出材料屈服强度的前提下,磨损与材料的晶体结构密切相关,常用金属材料钛合金作为摩擦副材料具有一定的优势,为高应力摩擦副材料的选用提供参考。
- Abstract:
- Aiming at the problem of the wear of the ball-end of the main spring seat of the pressure reducing valve, the failure mechanism of the ball-end of the pressure reducing valve was analyzed by the method of combining simulation and experiment.Stress and strain of the steel 2Cr13 ball-end with different hardness combinations were calculated, and results indicate that the existing structure has the problem of super high stress.The wear of paired metal materials was studied, from the improvement ideas of reducing contact stress and avoiding adhesion wear, the improvement measures were proposed.Through the verification of wear comparison test, the final improvement plan of the pressure reducing valve was determined.After large numbers of the pressure reducing valve test, the problem of ball wear has been completely solved, which verifies the effectiveness of the improvement measures.Under the premise that the contact stress does not exceed the yield strength of the material, wear is closely related to the crystal structure of the material.The titanium alloy has certain advantages as the friction pair material.
参考文献/References:
[1] 徐登伟,朱建国.减压阀启动振荡分析与抑制研究[J].火箭推进,2021,47(2):76-80.
XU D W,ZHU J G.Analysis and inhibition research on startup pressure oscillation of pressure reducing valve[J].Journal of Rocket Propulsion,2021,47(2):76-80.
[2] 朱建国,魏学峰,孙亮.某减压阀高压冲击超调问题仿真分析与试验研究[J].火箭推进,2015,41(5):72-76.
ZHU J G,WEI X F,SUN L.Simulation and experiment research on high-pressure shock overshoot phenomenon of pressure reducing valve[J].Journal of Rocket Propulsion,2015,41(5):72-76.
[3] 王顺,何东升,魏秦文,等.基于ABAQUS的三通有限元分析与强度评定[J].化学工程与装备,2015(12):1-3.
[4] 岳晓宇.基于ABAQUS的导轨副磨粒磨损微观过程的有限元研究[D].天津:天津理工大学,2014.
[5] 霍亚军.向心关节轴承摩擦磨损性能仿真及试验分析[D].上海:上海交通大学,2015.[6] 张生芳,金路,刘宇,等.风电盘式制动器制动闸片磨粒磨损仿真分析[J].大连交通大学学报,2018,39(1):53-59.
[7] 李聪聪,曾攀,雷丽萍,等.钴基合金的滑动磨损行为及仿真预测[J].机械工程学报,2011,47(21):97-103.
[8] 孙家枢.金属的磨损[M].北京:冶金工业出版社,1992.
[9] 李茂林.我国金属耐磨材料的发展和应用[J].铸造,2002,51(9):525-529.
[10] 戴雄杰.摩擦学基础[M].上海:上海科学技术出版社,1984.
[11] 温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1-5.
[12] 辛礼兵.磨损机理的研究与探讨[J].安徽职业技术学院学报,2006,5(4):11-14.
[13] 黄维刚,薛冬峰.材料结构与性能[M].上海:华东理工大学出版社,2010.
[14] 丁晖.金属材料及热处理[M].北京:北京航空航天大学出版社,2012.
[15] 赵永庆,陈永楠,张学敏.钛合金相变及热处理[M].长沙:中南大学出版社,2012.
[16] 袁成清.磨损过程中的磨粒表面和磨损表面特征及其相互关系研究[D].武汉:武汉理工大学,2005.
[17] 机械设计手册编委会.机械设计手册:滑动轴承[M].北京:机械工业出版社,2007.
[18] 李建明.磨损金属学[M].北京:冶金工业出版社,1990.
[19] 赵伟刚,张鹏鹏,任姗姗,等.液体火箭发动机涡轮泵机械密封磨损机理研究[J].火箭推进,2017,43(3):10-16.
ZHAO W G,ZHANG P P,REN S S,et al.Research on wear mechanism of mechanical seal for turbopump in liquid rocket engine[J].Journal of Rocket Propulsion,2017,43(3):10-16.
[20] 杨晓辉,曹佩,王毅,等.C/SiC复合材料喷嘴冲蚀磨损性能及其机理研究[J].火箭推进,2019,45(1):53-58.
YANG X H,CAO P,WANG Y,et al.Study on erosion wear properties and its mechanism of C/SiC composite nozzle[J].Journal of Rocket Propulsion,2019,45(1):53-58.
备注/Memo
收稿日期:2021-06-18 修回日期:2021-10-31
基金项目:国家自然科学基金(51775412)
作者简介:徐登伟(1985—),男,硕士,高级工程师,研究领域为液体火箭发动机阀门设计。