航天推进技术研究院主办
WANG Jinyun.Numerical simulation of two phase flow characteristics in nozzle of nano-iron-based metal fuel engine[J].Journal of Rocket Propulsion,2022,48(05):29-37.
纳米铁基金属燃料发动机喷管两相流特性数值模拟
- Title:
- Numerical simulation of two phase flow characteristics in nozzle of nano-iron-based metal fuel engine
- 文章编号:
- 1672-9374(2022)05-0029-09
- Keywords:
- nano-iron-based metal fuel engine two phase flow characteristics of nozzle numerical simulation
- 分类号:
- V238
- 文献标志码:
- A
- 摘要:
- 针对纳米铁基金属燃料发动机技术,建立颗粒燃烧模型与喷管两相流动控制模型,基于VC++软件自主编程,对纳米铁基金属燃料发动机喷管内颗粒相速度、颗粒温度、颗粒粒径、质量传递速率、颗粒速度滞后、温度滞后、流体密度、压强、雷诺数、马赫数、气相速度、气相温度等参数进行模拟仿真,重点研究了0.4~1.0 μm颗粒粒径和10~40凝相含量铁氧化物颗粒对发动机两相流损失的重要影响。结果表明,凝相含量、颗粒粒径变化对颗粒温度滞后和速度滞后具有显著影响,在凝相含量约为30的情况下,纳米铁粉金属燃料发动机达到了最佳的比冲性能。该研究可为新一代纳米铁基金属燃料发动机优化设计提供理论参考。
- Abstract:
- In view of the technology of nano-iron-based metal fuel engine, the particle combustion model and the nozzle two-phase flow control model were established in this study.Based on VC++ independent programming, the parameters in the nozzle of nano-iron-based metal fuel engine were analyzed, such as the particle phase velocity, particle temperature, particle size, mass transfer rate, particle velocity lag, temperature lag, fluid density, pressure, Reynolds number, Mach number, gas phase velocity, particle velocity, particle velocity lag and temperature lag.The important effects of 0.4-1.0 μm particle size and 10-40 iron oxide particles during the condensed phase on the two-phase flow loss of engine were mainly investigated.The results show that the changes of condensed phase content and particle size have significant effects on particle temperature lag and velocity lag.When the condensed phase content is approximately 30, the nano-iron-based metal fuel engine achieves the best specific impulse performance.This study can provide a theoretical reference for the optimal design of a new generation of nano-iron-based metal fuel engine.
参考文献/References:
[1] 史帝芬.金属燃料[J].资源与人居环境,2011(4):40-41.
[2] BEACH D,SUMPTER B G.Running on iron:Metal nanoparticles show promise as future fuels[J].Oak Ridge National Laboratory Review,2006,39:26.
[3] BEACH D B,RONDINONE A J,SUMPTER B G,et al.Solid-state combustion of metallic nanoparticles:New possibilities for an alternative energy carrier[J].Journal of Energy Resources Technology,2007,129(1):29-32.
[4] JULIEN P,WHITELEY S,GOROSHIN S,et al.Flame structure and particle-combustion regimes in premixed methane-iron-air suspensions[J].Proceedings of the Combustion Institute,2015,35(2):2431-2438.
[5] WEN D S,SONG P X,ZHANG K,et al.Thermal oxidation of iron nanoparticles and its implication for chemical-looping combustion[J].Journal of Chemical Technology & Biotechnology,2011,86(3):375-380.
[6] MANDILAS C,KARAGIANNAKIS G,KONSTANDOPOULOS A G,et al.Study of oxidation and combustion characteristics of iron nanoparticles under idealized and enginelike conditions[J].Energy & Fuels,2016,30(5):4318-4330.
[7] 杨丽,朱燕群,王智化,等.微纳米金属铁粉的燃烧特性试验研究[J].浙江大学学报(工学版),2010,44(8):1562-1566.
[8] 何丹丹,金晶,路遥,等.纳米铁粉燃烧特性研究[J].上海理工大学学报,2012,34(1):88-92.
[9] 高文静,金晶,曾武勇.纳米铁粉的燃烧动力学模型研究[J].科学技术与工程,2013,13(33):9808-9812.
[10] HWANG C J,CHANG G C.Numerical study of gas-particle flow in a solid rocket nozzle[J].AIAA Journal,1988,26(6):682-689.
[11] SACHDEV J,GROTH C,GOTTLIEB J.Parallel solution-adaptive scheme for multi-phase core flows in rocket motors[C]//16th AIAA Computational Fluid Dynamics Conference.Reston,Virginia:AIAA,2003:4106.
[12] TSURU W,UENO S,KINOUE Y,et al.Comparison of one-dimensional analysis with experiment for CO2 two-phase nozzle flow[J].Open Journal of Fluid Dynamics,2014,4(5):415-424.
[13] PIROOZIAN A,HEMMATI M,ISMAIL I,et al.An experimental study of flow patterns pertinent to waxy crude oil-water two-phase flows[J].Chemical Engineering Science,2017,164:313-332.
[14] PELUCHON S,GALLICE G,MIEUSSENS L.A robust implicit-explicit acoustic-transport splitting scheme for two-phase flows[J].Journal of Computational Physics,2017,339:328-355.
[15] TEIXEIRA R G D,SECCHI A R,BISCAIA E C.Differential-Algebraic numerical approach to the one-dimensional Drift-Flux Model applied to a multicomponent hydrocarbon two-phase flow[J].Computers & Chemical Engineering,2017,101:125-137.
[16] ALI H,KIM K W,KIM J S,et al.Numerical study on the effects of contraction ratio in a two-phase flow injection nozzle[J].Open Journal of Fluid Dynamics,2016,6(1):1-10.
[17] RISHA G A,CONNELL T L,YETTER R A,et al.Combustion of frozen nanoaluminum and water mixtures[J].Journal of Propulsion and Power,2013,30(1):133-142.
[18] LI J,ZHANG J.Analytical study on char combustion of spheroidal particles under forced convection[J].Powder Technology,2017,313:210-217.
[19] SAHA M,DALLY B B,MEDWELL P R,et al.Effect of particle size on the MILD combustion characteristics of pulverised brown coal[J].Fuel Processing Technology,2017,155:74-87.
[20] 方丁酉.两相流动力学[M].长沙:国防科技大学出版社,1988.
备注/Memo
收稿日期:2021-06-12 修回日期:2021-11-05
基金项目:中央引导地方科技发展资金(216Z4601G) 河北省科技厅重大科研支撑项目(16211013D) 河北省重点研发计划项目高端装备制造技术创新专项(21313501D)
作者简介:王金云(1978—),男,博士,研究员,研究领域为金属燃料发动机技术。