航天推进技术研究院主办
ZHAO Can,WANG Jianchao,ZHANG Jian,et al.Phased array ultrasonic testing of electron beam weld penetration at generator head[J].Journal of Rocket Propulsion,2022,48(05):84-92.
发生器头部电子束焊缝熔深相控阵超声检测
- Title:
- Phased array ultrasonic testing of electron beam weld penetration at generator head
- 文章编号:
- 1672-9374(2022)05-0084-09
- 分类号:
- TG115.28
- 文献标志码:
- A
- 摘要:
- 为了解决液体火箭发动机燃气发生器头部关键电子束焊缝熔深无法测量问题开展相控阵超声检测技术研究。基于发生器头部焊接结构特点阐述了熔深测量原理 建立了超声仿真模型,对带有矩形槽人工缺陷的模拟件进行检测试验,验证了模型建立的合理性和计算结果的有效性 通过仿真分析获得了不同频率相控阵探头在工件内部的横波声场信息,对探头频率进行了优选 根据不同焊接熔深下未焊透界面回波幅值随聚焦深度的变化规律及熔深测量结果,得到了聚焦深度的最佳取值范围 利用发生器头部模拟样件进行检测试验并与金相测量值对比,结果表明,对于焊接厚度约11 mm的焊缝,使用10 MHz线阵探头,聚焦深度设置为8 mm时,熔深测量误差小于1 mm,满足工程定量需求。
- Abstract:
- In order to solve the problem of weld penetration measurement at the head of gas generator in liquid rocket engine, the phased array ultrasonic testing technology was studied.The principle of penetration measurement was described according to the welding structure characteristics of generator head.Through the inspection tests on the simulated parts with rectangular groove artificial defects, the rationality of the ultrasonic simulation model and the validity of the calculation results were verified.Transverse wave sound field information of phased array probes with different frequencies was obtained through simulation analysis, and the probe frequency was optimized.According to the variation of echo amplitude of incomplete penetration with the focus depth under different welding penetration depths and the measurement results, the optimal value range of the focus depth was obtained.The simulation specimen of the generator head was used for testing and compared with the metallographic measurements.The results show that for the weld thickness of about 11 mm, the measurement error of penetration is less than 1 mm compared with the metallographic value, when using 10 MHz linear phased array probe and focal depth is 8 mm, which meets the quantitative requirements of engineering.
参考文献/References:
[1] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[2] 赵芳,任泽斌.燃气发生器应用综述[J].火箭推进,2019,45(3):1-8.
ZHAO F,REN Z B.Overview of application of combustion-gas generator[J].Journal of Rocket Propulsion,2019,45(3):1-8.
[3] 张锋,严宇,杨伟东,等.气氧/煤油富燃燃气发生器积碳特性试验研究[J].火箭推进,2017,43(6):76-81.ZHANG F,YAN Y,YANG W D,et al.Experimental investigation on soot deposition in a fuel-rich GOX/kerosene gas generator[J].Journal of Rocket Propulsion,2017,43(6):76-81.
[4] 秦新华,叶力华,周塞塞,等.燃气发生器固定连接结构可靠性改进设计[J].火箭推进,2014,40(6):31-36.
QIN X H,YE L H,ZHOU S S,et al.Reliability improvement of fixed connection structure of gas generator[J].Journal of Rocket Propulsion,2014,40(6):31-36.
[5] 刘上,刘红军,王海燕.富氧燃气发生器液氧供应系统频率特性分析[J].火箭推进,2013,39(2):12-18.
LIU S,LIU H J,WANG H Y.Frequency characteristic analysis for LOX feed system of oxidizer-rich preburner[J].Journal of Rocket Propulsion,2013,39(2):12-18.
[6] 谢宝奎,闫世春,刘晓斌,等.组合齿轮焊缝熔深超声波检测[J].无损探伤,2012,36(6):28-29.
[7] 唐盛明,齐子诚,刘子瑜,等.电子束焊缝超声波C扫描与工业CT检测方法测试结果比较[J].无损检测,2014,36(10):49-52.
[8] 任俊波,唐月明,王学权,等.锆合金浅焊缝熔深超声显微检测技术研究[J].材料导报,2015,29(S1):80-82.
[9] 余亮,陈玉华,黄春平,等.搅拌摩擦焊焊缝缺陷的超声相控阵检测技术[J].焊接学报,2014,35(1):21-24.
[10] 史亦韦.超声检测[M].北京:机械工业出版社,2005.
[11] 李斯特·W,斯克姆尔·Jr.超声相控阵原理[M].徐春广,李卫彬,译.北京:国防工业出版社,2017.
[12] 李衍.超声相控阵技术(第一部分):基本概念[J].无损探伤,2007,31(4):24-28.
[13] 程高飞.基于CIVA平台的材料中超声检测声场分布和小缺陷响应建模仿真及实验研究[D].杭州:浙江大学,2017.
[14] 张小龙,张子健,吴家喜,等.奥氏体不锈钢厚壁对接焊缝的超声相控阵CIVA仿真与试验[J].无损检测,2018,40(9):30-34.
[15] 戈浩.相控阵超声检测横向分辨力的影响因素[J].无损检测,2018,40(7):27-30.
[16] 杨平华,林莉,刘春伟,等.相控阵超声检测横向分辨力实验测试及分析[J].仪器仪表学报,2011,32(6):1384-1389.
[17] 王锐.未来聚变堆真空室复杂焊缝相控阵超声检测关键技术研究[D].合肥:中国科学技术大学,2019.
备注/Memo
收稿日期:2021-07-13 修回日期:2021-09-01
作者简介:赵灿(1989—),男,硕士,工程师,研究领域为液体火箭发动机无损检测。