航天推进技术研究院主办
WANG Jianlei,MU Huan,GONG Chunlin.Optimal design of wide-speed range two-dimensional inlet with free configuration[J].Journal of Rocket Propulsion,2022,48(06):92-100.
自由造型的宽速域二元进气道优化设计
- Title:
- Optimal design of wide-speed range two-dimensional inlet with free configuration
- 文章编号:
- 1672-9374(2022)06-0092-09
- 分类号:
- V221.3
- 文献标志码:
- A
- 摘要:
- 二元进气道常用于宽速域吸气式飞行器,相比于巡航类的飞行器,宽速域飞行器的飞行速域较大,进气道要兼顾高低速条件下的飞行要求存在一定的困难。提出了一种自由造型的二元进气道设计方法,采用类别形状函数法对二元进气道的压缩面进行参数化建模,将函数的控制参数作为优化变量直接对压缩面进行优化,设计时无须选择设计点。同时,根据进气道吸入流量和发动机需求流量之间的匹配关系,提出了一种适用于宽速域二元进气道优化设计的目标函数。结果表明,优化得到的二元进气道在马赫数2.5到8的范围内总压恢复系数和流量系数均能满足设计要求。
- Abstract:
- Two-dimensional air inlet is often used in wide-speed range air-breathing aircraft. Compared with cruise-type aircraft,the flight speed range of wide-speed range aircraft is larger,and it is difficult for the inlet to meet the flight requirements under both high-speed and low-speed conditions. A design method for the two-dimensional inlet with free-configuration is proposed in this paper. It uses the category shape function method to parametrically model the compression surface of the two-dimensional inlet. The control parameters of the function as optimization variables are used to optimize the compression surface directly,and there is no need to select design points during the design. In addition,according to the matching relationship between the intake flow and the demand flow of engine,an objective function suitable for the optimal design of a wide-speed two-dimensional inlet is proposed. The results show that both the flow coefficient and total pressure recovery coefficient can meet the design requirements in the range of Mach number 2.5 to 8.
参考文献/References:
[1] 孟宇鹏,杨晖,满延进. 高超声速进气道飞行器一体化设计技术的发展[J].气体物理,2021,6(4):66-83.
[2] ESCHER W,HYDE E,ANDERSON D. A users primer for comparative assessments of all-rocket and rocket-based combined-cycle propulsion systems for advanced Earth-to-orbit space transport applications[C]//31st Joint Propulsion Conference and Exhibit. Reston,Virigina:AIAA, 1995.
[3] DAMM K A,GOLLAN R J,JACOBS P A,et al.Discrete adjoint optimization of a hypersonic inlet[J].AIAA Journal,2020,58(6):2621-2634.
[4] TEKASLAN H E,IMRAK R,NIKBAY M. Reliability based design optimization of a supersonic engine inlet[C]//AIAA Propulsion and Energy 2021 Forum. Reston,Virginia:AIAA,2021.
[5] SMART M K. Optimization of two-dimensional scramjet inlets[J].Journal of Aircraft,1999,36(2):430-433.
[6] SHUKLA V,GELSEY A,SCHWABACHER M,et al.Automated design optimization for the P2 and P8 hypersonic inlets[J].Journal of Aircraft,1997,34(2):228-235.
[7] MARKELL K C. Exergy methods for the generic analysis and optimization of hypersonic vehicle concepts[EB/OL].https://www.semanticscholar.org/paper/Exergy-Methods-for-the-Generic-Analysis-and-of-Markell/e587b0f5bac7431 bb870a36668f0f23530d70892,2005.
[8] 范晓樯,李桦,李晓宇,等. 高超声速二维进气道参数化设计方法初探[J].航空动力学报,2007,22(1):66-72.
[9] 张晓嘉,梁德旺,李博,等. 典型二元高超声速进气道设计方法研究[J].航空动力学报,2007,22(8):1290-1296.
[10] 王向转,詹浩,朱军. 二维高超声速进气道优化设计方法研究[J].飞行力学,2009,27(4):25-27.
[11] 孙菲,任鑫. 高超声速二维进气道多目标优化[J].战术导弹技术,2014(5):76-81.
[12] 王翼,徐尚成,周芸帆,等. 多目标考虑下高超声速进气道唇口角参数化设计与分析[J].航空学报,2022,43:125698.
[13] 徐旭,陈兵,徐大军. 冲压发动机原理及技术[M].北京:北京航空航天大学出版社,2014.
[14] BOLES J A,THOMAS C E,SALAZAR G,et al.Flow distortion computational modeling and design optimization for supersonic inlet[C]//AIAA Scitech 2021 Forum. Reston,Virginia:AIAA,2021.
[15] 严岭峰. RBCC飞行器前体/进气道一体化气动构型设计[D].南京:南京航空航天大学,2014.
[16] 梁德旺,李博,袁化成. 反压作用下等直隔离段性能估算方法研究[C]//中国第一届近代空气动力学与气动热力学会议论文集.绵阳:[s.n.],2006.
[17] KULFAN B,BUSSOLETTI J. “Fundamental” parameteric geometry representations for aircraft component shapes[C]//11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston,Virginia:AIAA,2006.
[18] 刘传振,段焰辉,蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J].气体物理,2016,1(2):37-46.
[19] LI P,CHEN W,GUO W. “CST” parametric geometry representations for waveriders[EB/OL].http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHU201009001006.htm,2010.
[20] 关晓辉,李占科,宋笔锋. CST气动外形参数化方法研究[J].航空学报,2012,33(4):625-633.
[21] TYAN M,PARK J H,KIM S,et al.Subsonic airfoil and flap hybrid optimization using multi-fidelity aerodynamic analysis[C]//12th AIAA Aviation Technology,Integration,and Operations(ATIO)Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston,Virigina:AIAA,2012.
[22] 赖宇阳,姜欣,方立桥,等. Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,2012.
备注/Memo
收稿日期:2021-11-02 修回日期:2021-12-20
基金项目:国家自然科学基金(51806175)
作者简介:王健磊(1983—),男,博士,研究领域为高超声速飞行器一体化设计、新型流动控制技术。
通信作者:龚春林(1980—),男,博士,教授,研究领域为导弹和先进空天飞行器总体设计、飞行器多学科设计优化、武器系统仿真与效能评估。