航天推进技术研究院主办
WANG Dan,LIU Zhenli,ZHOU Kang,et al.Transient characteristic analysis of low-pressure ignition for normal-temperature propellant generator[J].Journal of Rocket Propulsion,2023,49(02):35-41.
常温推进剂发生器低压点火动态特性分析
- Title:
- Transient characteristic analysis of low-pressure ignition for normal-temperature propellant generator
- 文章编号:
- 1672-9374(2023)02-0035-07
- Keywords:
- low-pressure ignition of generator; transient characteristic analysis; correction coefficient of propellant conversion rate; system dynamic simulation; critical mixing ratio
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 针对常温推进剂富氧燃气发生器低压点火室压存在低工况建压缓慢的问题,提出一种基于推进剂转化率修正系数的修正方法。该方法将抛物线函数和双曲正切函数结合,形成新的修正系数函数,以燃气发生器混合比下降至临界混合比时刻作为修正系数函数切换点。经不同点火时序低压点火试验验证,仿真模型计算获得的燃气发生器室压与试验值最大动态误差为4.6。采用混合比36为临界混合比,可以在较宽的范围内准确捕捉到推进剂开始正常燃烧的时间点。富氧燃气发生器中若提前进入过多氧化剂会导致大量积存,将与其后进入而不断累积的燃料瞬间发生剧烈化学反应导致室压出现超调峰值,在时序设计中应在保证富氧点火的前提下尽可能缩短燃料与氧化剂进入的时差。
- Abstract:
- To solve the problem that the low-pressure ignition chamber pressure builds up slowly in the oxygen-enriched generator with normal-temperature propellant, a modified method based on the correction coefficient of propellant conversion rate is proposed.This method combines the parabola function and the hyperbolic tangent function to form a new correction coefficient function, and it takes the time when the mixing ratio of generator decreases to the critical mixing ratio as the switching point of the correction coefficient function.The results, verified by the low pressure ignition test with different ignition sequences, show that the maximum dynamic error of the generator chamber pressure between the simulated results and the test value is 4.6.Using the mixing ratio of 36 as the critical mixing ratio, the time point of normal combustion of propellant can be accurately captured in a wide range.If the oxidant in the oxygen-enriched generator accumulates too much in advance, a sharp chemical reaction will take place in the generator after fuel enters and it will lead to a peak overshoot in the chamber pressure.For the design of time sequence, the time lag between the fuel and the oxidizer should be shortened as far as possible on the premise of ensuring the oxygen-enriched ignition.
参考文献/References:
[1] 张凯宏,江欣,肖明杰,等.基于流固耦合理论的关机水击特性[J].火箭推进,2019,45(2):36-43.
ZHANG K H,JIANG X,XIAO M J,et al.Characteristics of water hammer in shutting based on FSI[J].Journal of Rocket Propulsion,2019,45(2):36-43.
[2] 汪洪波,吴海燕,谭建国.推进系统动力学[M].北京:科学出版社,2018.
[3] 陈宏玉,刘红军,陈建华.补燃循环发动机强迫起动过程[J].航空动力学报,2015,30(12):3010-3016.
[4] 张育林,刘昆,程谋森.液体火箭发动机动力学理论与应用[M].北京:科学出版社,2005.
[5] 任孝文,陈宏玉,李平,等.弱可压缩流体与可压缩流体模型的管路水击研究[J].推进技术,2020,41(8):1880-1886.
[6] 刘昆,张育林,程谋森.液体火箭发动机系统瞬变过程模块化建模与仿真[J].推进技术,2003,24(5):401-405.
[7] 汪小卫,金平,俞南嘉,等.富氧预燃室试验启动过程研究[J].航空动力学报,2007,22(12):2119-2123.
[8] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005.
[9] 格列克曼.液体火箭发动机自动调节[M].顾明初,郁明桂,邱明煜,译.北京:宇航出版社,1995.
[10] 契万诺夫,比利亚耶夫,切尔瓦科夫.液体火箭发动机工作过程的数学模拟[M].张兴波,李平,陈建华,等译.西安:航天科技集团公司第十一研究所,2000.
[11] 赵建军,丁建完,周凡利,等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报,2006,18(S2):570-573.
[12] 吴民峰.多领域建模仿真平台中语义分析关键机制研究与实现[D].武汉:华中科技大学,2006.
[13] 李国欣.多领域物理系统建模平台中若干关键技术研究与实现[D].武汉:华中科技大学,2007.
[14] ELMQVIST H.A structured model language for large continuous systems[D].Lund, Sweden: Lund University,1978.
[15] MATTSSON S E,ELMQVIST H,OTTER M.Physical system modeling with Modelica[J].Control Engineering Practice,1998,6(4):501-510.
[16] JAKOBSEN A.Energy optimisation of refrigeration systems[D].Copenhagen:Technical University of Denmark,1995.
[17] FOWLER A C.Mathematical models in the applied sciences[J].Biometrics,1998,54(4):1684.
[18] 陈立平,周凡利,丁建完.多领域物理统一建模语言MODELICA与MWORKS系统建模[M].武汉:华中科技大学出版社,2019.
[19] 陈宏玉,刘红军,陈建华.液氧煤油发动机瞬态特性模块化通用仿真研究[C]//航空宇航科学与技术全国博士生学术论坛论文集.长沙:[s.n.],2013.
[20] 陈宏玉.液氧煤油发动机瞬变过程分布参数建模与仿真研究[D].西安:西安航天动力研究所,2013.
备注/Memo
收稿日期:2021-05-07; 修回日期:2021-06-29
基金项目:国家青年科技基金(11702204)
作者简介:王丹(1989—),女,硕士,高级工程师,研究领域为火箭发动机系统。