航天推进技术研究院主办
SHANG Mengyu,FAN Qing,ZHANG Ke,et al.Numerical simulation of flow and heat transfer characteristics in rotating double process of blade root passage[J].Journal of Rocket Propulsion,2023,49(02):42-50.
旋转双流程叶根弯道流动传热特性数值模拟
- Title:
- Numerical simulation of flow and heat transfer characteristics in rotating double process of blade root passage
- 文章编号:
- 1672-9374(2023)02-0042-09
- Keywords:
- rotation; blade root passage; flow and heat transfer; rotation number; buoyancy parameter; angled rib; numerical simulation
- 分类号:
- V231.1
- 文献标志码:
- A
- 摘要:
- 旋转带来的叶片内部动-热负荷不均衡性会严重影响透平机械的安全与稳定。为研究旋转数和浮力系数对涡轮动叶片内部通道流动传热特性的影响,应用CFD仿真计算方法,分别以光滑和带肋的叶根弯道为对象,在旋转数分别为0、0.15、0.2、0.25、0.3和浮力系数分别为0、0.3、0.4、0.5、0.6的条件下进行模拟。结果表明:随着旋转数增加,科氏力作用增强,在科氏力指向侧的流动传热得以强化; 浮力系数增大,旋转浮升力作用增强,会导致内流通道前后缘面出现双峰流,外流通道前缘面出现流动分离甚至产生回流; 综合对比光滑通道和带肋通道,带肋通道的换热强度更大,且受到旋转效应的影响比光滑通道小。
- Abstract:
- The imbalance of dynamic and thermal load inside the blade caused by rotation affects the safety and stability of turbomachinery seriously.In order to study the influence of rotation number and buoyancy coefficient on the flow and heat transfer characteristics in the internal passage of rotor blade,smooth and ribbed passages were simulated with CFD simulation under the conditions of rotation number 0,0.15,0.2,0.25,0.3 and buoyancy parameter 0,0.3,0.4,0.5,0.6, respectively.The results show that with the increase of rotation number,Coriolis force is enhanced and the heat transfer in the edge of same direction of Coriolis force is strengthened.With the increase of buoyancy coefficient, the effect of rotary buoyancy force will be enhanced,which will lead to the double peak flow state appeared at the leading and trailing edges of the inflow passage, and the flow separation or the even backflow occurred at the leading edges of the outflow passage.By the comprehensive comparison between the smooth passage and the ribbed passage, the heat transfer intensity in the ribbed passage is higher, and the effect of rotation is less than that of the smooth passage.
参考文献/References:
[1] HAN J C.Advanced cooling in gas turbines 2016 max Jakob memorial award paper[J].Journal of Heat Transfer,2018,140(11):113001.
[2] 张萌,孙冰.人工粗糙度对矩形弯曲管道流动与传热数值模拟[J].火箭推进,2020,46(1):20-27.
ZHANG M,SUN B.Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J].Journal of Rocket Propulsion,2020,46(1):20-27.
[3] WRIGHT L M,HAN J C.Heat transfer enhancement for turbine blade internal cooling[J].Journal of Enhanced Heat Transfer,2014,21(2/3):111-140.
[4] HAN J C,GLICKSMAN L R,ROHSENOW W M.An investigation of heat transfer and friction for rib-roughened surfaces[J].International Journal of Heat and Mass Transfer,1978,21(8):1143-1156.
[5] HAN J C.Heat transfer and friction in channels with two opposite rib-roughened walls[J].Journal of Heat Transfer,1984,106(4):774-781.
[6] HAN J C.Heat transfer and friction characteristics in rectangular channels with rib turbulators[J].Journal of Heat Transfer,1988,110(2):321-328.
[7] HAN J C,OU S,PARK J S,et al.Augmented heat transfer in rectangular channels of narrow aspect ratios with rib turbulators[J].International Journal of Heat and Mass Transfer,1989,32(9):1619-1630.
[8] HAN J C,ZHANG Y M,LEE C P.Augmented heat transfer in square channels with parallel,crossed,and V-shaped angled ribs[J].Journal of Heat Transfer,1991,113(3):590-596.
[9] HAN J C,ZHANG Y M.High performance heat transfer ducts with parallel broken and V-shaped broken ribs[J].International Journal of Heat and Mass Transfer,1992,35(2):513-523.
[10] YERANEE K,RAO Y.A review of recent studies on rotating internal cooling for gas turbine blades[J].Chinese Journal of Aeronautics,2021,34(7):85-113.
[11] WAGNER J H,JOHNSON B V,HAJEK T J.Heat transfer in rotating passages with smooth walls and radial outward flow[J].Journal of Turbomachinery,1991,113(1):42-51.
[12] WAGNER J H,JOHNSON B V,KOPPER F C.Heat transfer in rotating serpentine passages with smooth walls[J].Journal of Turbomachinery,1991,113(3):321-330.
[13] DUTTA S,ANDREWS M J,HAN J C.Prediction of turbulent heat transfer in rotating smooth square ducts[J].International Journal of Heat and Mass Transfer,1996,39(12):2505-2514.
[14] 邓宏武,张炜,陶智.旋转状态下带肋U形通道内换热的实验研究[J].推进技术,2000,21(1):26-29.
[15] 邓宏武,程俊华,陈豪,等.高旋转数下光滑回转通道的换热特性[J].北京航空航天大学学报,2014,40(5):701-706.
[16] 程俊华,倪彬,邓宏武,等.高旋转数内冷通道换热实验技术及验证[J].航空动力学报,2014,29(8):1817-1823.
[17] 郑杰,朱惠人,赵曙,等.湍流模型对旋转状态下S型带肋回转通道内部换热特性的影响[J].科学技术与工程,2012,12(9):2090-2095.
[18] 崔欣超,邓宏武,李洋,等.温度比对旋转直肋双通道换热特性的影响研究[J].推进技术,2016,37(11):2009-2016.
[19] FU W L,WRIGHT L M,HAN J C.Heat transfer in two-pass rotating rectangular channels(AR=1:2 and AR=1:4)with 45 deg angled rib turbulators[J].Journal of Turbomachinery,2005,127(1):164-174.
[20] LIOU T M,CHEN M Y,TSAI M H.Fluid flow and heat transfer in a rotating two-pass square duct with In-line 90-deg ribs[J].Journal of Turbomachinery,2002,124(2):260-268.
[21] SHRESTHA S,PRASAD A,RICKLICK M A.Internal cooling of rotating and non-rotating channels with rib turbulators[C]//2018 AIAA Aerospace Sciences Meeting.Reston,Virginia:AIAA,2018.
备注/Memo
收稿日期:2022-01-31; 修回日期:2022-03-09
基金项目:国家自然科学基金(5177615、52076107); 国家科技重大专项(2017-Ⅲ-0009-0035)
通信作者:雷蒋(1980—),男,博士,研究领域为推进系统热端部件传热与冷却。
作者简介:尚梦雨(1998—),男,硕士,研究领域为推进系统热端部件传热与冷却。