航天推进技术研究院主办
ZHANG Zhongli,ZHOU Lixin,HU Jinhua.Thermal protection methods of multilayer heat insulation material[J].Journal of Rocket Propulsion,2023,49(02):51-56.
多层隔热材料热防护方法
- Title:
- Thermal protection methods of multilayer heat insulation material
- 文章编号:
- 1672-9374(2023)02-0051-06
- 分类号:
- V231.3
- 文献标志码:
- A
- 摘要:
- 基于运载火箭一二级发动机分离时热流密度约为9.6 MW/m2、持续时间0.5 s,二级发动机工作时的喷管辐射热流密度为25~100 kW/m2、持续时间120 s的边界条件,选取了2.0 mm厚的氧化锆陶瓷纤维板、5.0/8.0 mm厚的硅酸铝纤维毡、3.2/1.6 mm厚的阻燃型硅橡胶组成的两种隔热方案。应用一维非稳态方法仿真分析了两种隔热方案保护下发动机舱内部组件的壁温,依据隔热组件壁温及材料质量,提出了耐高温多层隔热材料热防护方案。使用液化气喷枪喷吹高温合金平板模拟燃烧室壁,模拟试验壁温测试值表明隔热方案可以满足热防护要求。
- Abstract:
- Based on the boundary conditions that the separated heat flux of the 1st and 2nd stages of the launch vehicle is about 9.6 MW/m2 and the running time is 0.5 s, and the nozzle radiation heat flux of the 2nd stage engine is 25-100 kW/m2 and lasting time is about 120 s.Two thermal insulation schemes were selected, which were composed of 2.0 mm thick zirconia ceramic plate, 5.0/8.0 mm thick aluminum silicate fiber felt and 3.2/1.6 mm thick flame retardant silicone rubber.One-dimensional unsteady state method was used to simulate and analyze the wall temperature of the components in the engine under the protection of two thermal insulation schemes.According to the wall temperature and material mass, the thermal protection scheme of high temperature resistant multilayer thermal insulation materials is put forward.Using LPG spray gun to inject super-alloy plate to simulate the combustion chamber wall, the wall temperature of simulation test shows that the thermal insulation scheme can meet the requirements of thermal protection.
参考文献/References:
[1] 范瑞祥,徐珊姝,宫宇昆,等.基于CFD/DSMC羽流仿真的新型运载火箭二级尾舱整体防热方案研究[J].载人航天,2018,24(4):500-504.
[2] 周志坛,丁逸夫,乐贵高,等.高空飞行环境中液体运载火箭底部热环境研究[J].宇航学报,2019,40(5):577-584.
[3] 张灿,林旭斌,刘都群,等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹,2020(1):16-20.
[4] 王鹏飞,王光明,蒋坤,等.临近空间高超声速飞行器发展及关键技术研究[J].飞航导弹,2019(8):22-28.
[5] 刘欣,王国庆,李曙光,等.重型运载火箭关键制造技术发展展望[J].航天制造技术,2013(1):1-6.
[6] 林奔,黄超,马云龙,等.重型运载火箭结构材料选材方案研究与启示[J].轻合金加工技术,2020,48(6):14-18.
[7] 张忠利.姿控发动机热防护研究[J].火箭推进,2008,34(3):17-22.
ZHANG Z L.Investigation on thermal protection for attitude correction liquid rocket engine[J].Journal of Rocket Propulsion,2008,34(3):17-22.
[8] 王亚军,刘树仁,吴义田,等.运载火箭柔性防热材料隔热性能的试验研究[J].航天器环境工程,2019,36(1):56-60.
[9] 冯韶伟,马忠辉,吴义田,等.国外运载火箭可重复使用关键技术综述[J].导弹与航天运载技术,2014(5):82-86.
[10] 任芬,唐锦荣,吴光宗,等.SCAT弹头热防护的简化计算方法[J].宇航学报,1996,17(4):14-19.
[11] 华增功.固体发动机有机烧蚀防热涂层的研究[J].推进技术,1992,13(3):47-52.
[12] 魏超,张忠利.深空探测发动机热防护研究[J].航空动力学报,2010,25(5):1139-1144.
[13] 姚从菊.再入飞行器烧蚀层内热质传输过程的数值模拟[D].哈尔滨:哈尔滨工业大学,2007.
[14] 姬梅梅,朱时珍,马壮.航空航天用金属表面热防护涂层的研究进展[J].表面技术,2021,50(1):253-266.
[15] 朱剑琴,赵超凡,邱璐,等.热障涂层在涡轮叶片应用中的热防护有效性[J].航空动力学报,2019,34(11):2503-2508.
[16] 姜贵庆,马淑雅.防热涂层材料热防护性能预测[J].空气动力学学报,2004,22(1):24-28.
[17] 李崇俊.X-43A高超音速飞行器C/C热防护涂层结构分析[J].高科技纤维与应用,2015,40(4):26-30.
[18] 易桦,黄金印.星外管路多层隔热组件热参数确定方法[J].航天器工程,2013,22(3):53-57.
[19] 侯增祺,胡金刚.航天器热控制技术:原理及其应用[M].北京:中国科学技术出版社,2007.
[20] GILMORE D G.Spacecraft thermal control handbook[M].2nd ed.EI Segundo:The Aerospace Corporation Press,2002.
[21] 何知朱.新型热控材料器件及应用[M].北京:宇航出版社,1988.
相似文献/References:
[1]李元启,刘红军,徐浩海,等.液体火箭发动机动态特性仿真技术研究进展[J].火箭推进,2017,43(05):1.
LI Yuanqi,LIU Hongjun,XU Haohai,et al.Research progress on numerical simulation technology of
liquid rocket engine dynamic characteristics[J].Journal of Rocket Propulsion,2017,43(02):1.
[2]刘锋,申智帅,王波,等.气动增压空间推进系统及相关技术试验研究[J].火箭推进,2017,43(06):38.
LIU Feng,SHEN Zhishuai,et al.Experimental study on pneumatic pressurization space propulsion system and its correlation technology[J].Journal of Rocket Propulsion,2017,43(02):38.
[3]王 丹,陈宏玉,周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进,2018,44(02):28.
WANG Dan,CHEN Hongyu,ZHOU Chenchu.System scheme and performance evaluation of an engine fed by electric pump[J].Journal of Rocket Propulsion,2018,44(02):28.
[4]左 蔚,宋梦华,杨欢庆,等.增材制造技术在液体火箭发动机应用述评[J].火箭推进,2018,44(02):55.
ZUO Wei,SONG Menghua,YANG Huanqing,et al.Application of additive manufacturing technology in liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(02):55.
[5]杜大华,穆朋刚,田川,等.液体火箭发动机管路断裂失效分析及动力优化[J].火箭推进,2018,44(03):16.
DU Dahua,MU Penggang,et al.Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(02):16.
[6]张蒙正,张 玫.航天运载器重复使用液体动力若干问题探讨[J].火箭推进,2019,45(04):9.
ZHANG Mengzheng,ZHANG Mei.Discussion on some problems of reusable liquid-propellant engine[J].Journal of Rocket Propulsion,2019,45(02):9.
[7]蒲光荣,单 磊,赵晓慧,等.泵压式多次起动发动机起动过程仿真研究[J].火箭推进,2019,45(05):17.
PU Guangrong,SHAN Lei,ZHAO Xiaohui,et al.Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J].Journal of Rocket Propulsion,2019,45(02):17.
[8]石 璞,朱国强,李进贤,等.液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J].火箭推进,2020,46(04):1.
SHI Pu,ZHU Guoqiang,LI Jinxian,et al.Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J].Journal of Rocket Propulsion,2020,46(02):1.
[9]杜大华,王 珺,王红建,等.液体火箭发动机涡轮盘低周疲劳寿命预测[J].火箭推进,2020,46(06):13.
DU Dahua,WANG Jun,WANG Hongjian,et al.Low cycle fatigue life prediction of a liquid rocket
engine turbine disk[J].Journal of Rocket Propulsion,2020,46(02):13.
[10]刘育玮,张 航,张振臻,等.基于声信号的故障检测方法在运载火箭上的应用[J].火箭推进,2021,47(03):1.
LIU Yuwei,ZHANG Hang,ZHENG Zhenzhen,et al.Application of fault detection method based on acoustic signal in launch vehicle[J].Journal of Rocket Propulsion,2021,47(02):1.
备注/Memo
收稿日期:2021-12-16; 修回日期:2022-03-16
基金项目:国家联合基金(U1737112)
作者简介:张忠利(1970—),男,硕士,研究员,研究领域为液体火箭发动机过程分析。