航天推进技术研究院主办
WANG Tong,LIU Shang,JIANG Lei,et al.Investigation of thrust adjustment characteristics of open-cycle LOX/kerosene engine[J].Journal of Rocket Propulsion,2023,49(02):57-65,82.
开式循环液氧煤油发动机推力调节特性分析
- Title:
- Investigation of thrust adjustment characteristics of open-cycle LOX/kerosene engine
- 文章编号:
- 1672-9374(2023)02-0057-09
- Keywords:
- open-cycle; LOX/kerosene engine; static properties; system simulation; thrust adjustment schemes
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 以开式循环液氧煤油发动机为研究对象,重点建立了冷却套传热模型,并嵌入发动机系统静态模型,通过试车数据验证了静态模型的准确性。通过静态调节仿真计算,对比5种不同推力调节方案的特性。结果表明:氧副路调节方案和涡轮燃气分流方案不能满足要求; 主路节流方案、副路双路调节方案和氧副路双工位阀+燃料副路调节器方案均可以实现发动机推力的大范围调节; 综合考虑调节元件的设计难度和发动机应用需求,氧副路双工位阀+燃料副路调节器方案有望在工程研制中得到应用。
- Abstract:
- A cooling jacket heat transfer model was established for the open-cycle LOX/kerosene engine and embedded in the engine system static model.The accuracy of the static model was verified by the test data.The characteristics of five different thrust adjustment schemes were compared by static control simulation calculation.The results show that it is not feasible to adjust the oxidizer path scheme of the gas generator and the flow rate scheme of the gas turbine.The main throttling scheme, the secondary double-way regulating scheme and the gas generator oxygen path setting double-position valve with the fuel path setting regulator scheme can realize the large-scale adjustment of the engine thrust.Considering the difficulty of the design of the adjusting element and the requirement of the engine application, the gas generator oxygen path setting double-position valve with the fuel path setting regulator scheme is expected to be applied in the engineering development.
参考文献/References:
[1] 庞之浩,贺勋.日新月异的中国运载火箭[J].国际太空,2019(9):12-18.
[2] 岳春国,李进贤,侯晓,等.变推力液体火箭发动机综述[J].中国科学(E辑:技术科学),2009,39(3):464-468.
[3] 张贵田.高压补燃液氧煤油发动机[M].北京:国防工业出版社,2005:27-70.
[4] 李斌,张小平,马冬英.我国新一代载人火箭液氧煤油发动机[J].载人航天,2014,20(5):427-431.
[5] SUTTON G P.History of liquid-propellant rocket engines in Russia,formerly the soviet union[J].Journal of Propulsion and Power,2003,19(6):1008-1037.
[6] 胡冬生,刘楠,刘丙利,等.美国重复使用运载火箭发展分析[J].国际太空,2020(12):38-45.
[7] 谭永华,杜飞平,陈建华,等.液氧煤油高压补燃循环发动机深度变推力系统方案研究[J].推进技术,2018,39(6):1201-1209.
[8] 王海燕,邢理想,高玉闪,等.富氧补燃循环液氧煤油发动机深度推力调节方案对比分析[J].载人航天,2019,25(3):389-396.
[9] LACEFIELD T,SPROW W.High performance Russian NK-33 LOX/kerosene liquid rocket engine[C]//30th Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,1994.
[10] CASIANO M,HULKA J,YANG V.Liquid-propellant rocket engine throttling:A comprehensive review[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,2009.
[11] 段小龙,刘站国,王拴虎,等.补燃循环液体火箭发动机大范围工况调节方案研究[J].火箭推进,2004,30(3):1-6.
DUAN X L,LIU Z G,WANG S H,et al.Study on large-scale working condition adjustment scheme of liquid rocket engine with supplementary combustion cycle[J].Journal of Rocket Propulsion,2004,30(3):1-6.
[12] 刘红军.液氧/煤油发动机稳态参数分布特性的仿真[J].推进技术,2004,25(5):385-387.
[13] BELIAEV E N,CHEVANOV V K,CHERVAKOV V V.Mathematical modeling of working processes of liquid propellant rocket engines[M].Moscow:MAI,2009.
[14] 郭克芳.液体火箭发动机静态仿真的探讨[J].推进技术,1987,8(3):41-46.
[15] 张宏伟,陶文铨,何雅玲,等.再生冷却推力室耦合传热数值模拟[J].航空动力学报,2006,21(5):930-936.
[16] RUTH E,AHN H,BAKER R,et al.Advanced liquid rocket engine transient model[R].AIAA 90-2299.
[17] JUNG T.Static characteristics of a flow regulator for a liquid rocket engine[J].Journal of Spacecraft and Rockets,2011,48(3):541-544.
[18] GRISSON W M.Liquid film cooling in rocket engines[R].AEDC-TR-91-1.
[19] 陈宏玉,刘红军.补燃循环发动机推力调节过程建模与仿真研究[J].火箭推进,2014,40(1):18-24.
CHEN H Y,LIU H J.Modeling and simulations on the thrust regulation process of staged combustion cycle rocket engine[J].Journal of Rocket Propulsion,2014,40(1):18-24.
[20] 张小平.补燃循环发动机推力调节研究[J].火箭推进,2008,34(4):1-5.
ZHANG X.Investigation on the thrust regulation of staged combustion cycle engine[J].Journal of Rocket Propulsion,2008,34(4):1-5.
[21] RAMESH D,AMINPOOR M.Nonlinear,dynamic simulation of an open cycle liquid rocket engine[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virigina:AIAA,2007.
[22] SANTANA A,BARBOSA F,NIWA M,et al.Modeling and robust analysis of a liquid rocket engine[EB/OL].https://www.semanticscholar.org/paper/Modeling-and-Robust-Analysis-of-a-Liquid-Rocket-Santana-Barbosa/486ff9 b7a27afc0418bb8af82e44cd11f9819085,2000.
相似文献/References:
[1]张相盟,陈 晖,高玉闪,等.500吨级液氧煤油发动机结构动态特性[J].火箭推进,2020,46(02):44.
ZHANG Xiangmeng,CHEN Hui,GAO Yushan,et al.Research on structural dynamic characteristics of the 500-ton LOX/kerosene rocket engine[J].Journal of Rocket Propulsion,2020,46(02):44.
[2]姜 垒,刘 上,刘志让,等.燃气发生器点火接力过程对发动机起动性能的影响[J].火箭推进,2021,47(03):74.
JIANG Lei,LIU Shang,LIU Zhirang,et al.Influence of ignition relay process of gas generator onstarting performance of engines[J].Journal of Rocket Propulsion,2021,47(02):74.
备注/Memo
收稿日期:2021-12-15; 修回日期:2022-02-16
作者简介:王通(1997—),男,硕士,研究领域为液体火箭发动机系统动力学。