航天推进技术研究院主办
WU Youliang,DING Yushuo,LIU Xiao,et al.Quasi-2D heat transfer calculation method of regenerative cooling thrust chamber[J].Journal of Rocket Propulsion,2023,49(02):66-73.
再生冷却推力室准二维传热数值计算
- Title:
- Quasi-2D heat transfer calculation method of regenerative cooling thrust chamber
- 文章编号:
- 1672-9374(2023)02-0066-08
- 分类号:
- V434.14
- 文献标志码:
- A
- 摘要:
- 为了提高液体火箭发动机传热计算精度,建立了再生冷却推力室准二维传热计算的通用方法。冷却通道内考虑了冷却剂层间导热导致的温度分层效应,燃气侧对流换热既可采用传统Bartz公式,又可直接求解边界层控制方程得到热流密度,最终基于MATLAB开发完成了通用的再生冷却推力室准二维传热程序。利用该程序对某氢氧发动机进行了传热计算,并与一维传热程序和三维CFD传热计算结果进行了对比,结果表明:准二维传热计算方法可以计算出冷却通道内温度分层情况,冷却剂温升、流阻计算值与热试数据吻合较好,误差在10以内,优于一维传热结果,验证了计算方法的有效性; 直接求解边界层控制方程得到的热流密度与三维计算结果吻合较好; 准二维传热计算时间短,效率高。
- Abstract:
- In order to improve the calculation accuracy of heat transfer, a general quasi-2D model was developed to study heat transfer of thrust chamber.This model takes account of the temperature stratification effect caused by heat conduction between coolant layers.The convective heat transfer on the gas side can be calculated by using Bartz equation or solving the governing equations of boundary layers.Then a quasi-2D heat transfer code was developed based on MATLAB language.Finally, validation of the model was carried out by comparison with the analysis of a rocket thrust chamber obtained by the code of one-dimensional model and CFD solver.The results show that the quasi-2D model can calculate the temperature stratification in the cooling channels.The calculated values of coolant temperature rise and pressure loss are in good agreement with the thermal test data, and the error is less than 10, which is better than the one-dimensional heat transfer results, which verifies the effectiveness of the calculation method.In addition, the heat flux obtained by directly solving the boundary layer governing equation is in good agreement with the CFD results.Finally, the calculation time of quasi-2D model is shortrt and the efficiency is higher.
参考文献/References:
[1] 孙冰,张建伟.火箭发动机热防护技术[M].北京:北京航空航天大学出版社,2016.
[2] 刘国球. 液体火箭发动机原理[M].北京:中国宇航出版社,2005.
[3] CALVO J B,HANNEMANN K.Numerical simulation of liquid rocket engine cooling channels[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2009.
[4] NEGISHI H,DAIMON Y,YAMANISHI N,et al.Numerical investigation of supercritical coolant flow in liquid rocket engine[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2010.
[5] NEGISHI H,KUMAKAWA A,YAMANISHI N,et al.Heat transfer simulations in liquid rocket engine subscale thrust chambers[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2008.
[6] NEGISHI H,KUMAKAWA A,MORIYA S,et al.Numerical investigations of heat transfer enhancement in a thrust chamber with hot gas side wall ribs[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston,Virginia:AIAA,2009.
[7] 方磊,刘伟.姿控用再生冷却推力室传热特性研究[J].火箭推进,2008,34(6):6-13.
FANG L,LIU W.Research on heat transfer characteristic of regeneratively cooled attitude control engine thrust chamber[J].Journal of Rocket Propulsion,2008,34(6):6-13.
[8] 吴峰,王秋旺,罗来勤,等.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,20(4):707-712.
[9] 康玉东,孙冰,高翔宇.液体火箭发动机推力室冷却通道温度分层数值研究[J].航空动力学报,2009,24(8):1904-1910.
[10] PIZZARELLI M,NASUTI F,ONOFRI M.Coupled numerical simulation of wall heat conduction and coolant flow in liquid rocket engines[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2011.
[11] DIVALENTIN J,NARAGHI M.Effects cooling channel curvature on coolant secondary flow and heat transfer[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2010.
[12] 吴有亮,张成印,潘浩,等.再生冷却燃气对流换热系数计算方法优化研究[J].火箭推进,2018,44(1):22-26.
WU Y L,ZHANG C Y,PAN H,et al.Optimization for calculation method of gas convective heat transfer coefficient inside regeneratively-cooled chamber[J].Journal of Rocket Propulsion,2018,44(1):22-26.
[13] 李军伟,刘宇.一种计算再生冷却推力室温度场的方法[J].航空动力学报,2004,19(4):550-556.
[14] 孙鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(2):32-37.
SUN X,YANG C H.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(2):32-37.
[15] PIZZARELLI M,CARAPELLESE S,NASUTI F.A quasi-2D model for the prediction of the wall temperature of rocket engine cooling channels[J].Numerical Heat Transfer,Part A:Applications,2011,60(1):1-24.
[16] BARTZ D R. A simple equation for rapid estimation of rocket nozzle convective heat transfer coefficient[J].Jet Propulsion,1957,27(1):49-51.
[17] 刘阳旻.液体火箭发动机喷管附面层求解器开发与应用[D].北京:中国运载火箭技术研究院,2021.
[18] 刘阳旻,田原.氢氧液体火箭发动机喷管边界层传热分析[J].低温工程,2020(S1):167-172.
[19] KACYNSKI K.Thermal stratification potential in rocket engine coolant channels[R].NASA-TM-4378.
[20] HESS H L,KUNZ H R.A study of forced convection heat transfer to supercritical hydrogen[J].Journal of Heat Transfer,1965,87(1):41-46.
[21] NARAGHI M,DUNN S,COATS D.A model for design and analysis of regeneratively cooled rocket engines[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2004.
相似文献/References:
[1]孙 鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(02):32.
SUN Xin,YANG Cheng-hu.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(02):32.
[2]张 明,孙 冰.液氧/甲烷发动机变截面冷却通道传热数值研究[J].火箭推进,2019,45(02):9.
ZHANG Ming,SUN Bing.Numerical study of heat transfer in variable cross-section
cooling channels of LOX/methane rocket engines[J].Journal of Rocket Propulsion,2019,45(02):9.
[3]李 媛,孙展鹏,周艳青,等.某固体火箭发动机药柱温度场有限元分析[J].火箭推进,2019,45(02):32.
LI Yuan,SUN Zhanpeng,ZHOU Yanqing,et al.Finite element analysis of grain temperature
field for a solid rocket motor[J].Journal of Rocket Propulsion,2019,45(02):32.
[4]唐 亮,李 平,周立新.液体火箭发动机液膜冷却研究综述[J].火箭推进,2020,46(01):1.
TANG Liang,LI Ping,ZHOU Lixin.Review on liquid film cooling of liquid rocket engine[J].Journal of Rocket Propulsion,2020,46(02):1.
[5]刘朝晖,宋晨阳,陈 强,等.吸热型碳氢燃料再生冷却性能评估方法[J].火箭推进,2020,46(02):15.
LIU Zhaohui,SONG Chenyang,CHEN Qiang,et al.Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J].Journal of Rocket Propulsion,2020,46(02):15.
[6]陈锐达,徐辉,陈泓宇,等.1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(04):17.
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(02):17.
[7]卞香港,李龙飞,王化余,等.基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验[J].火箭推进,2023,49(04):74.
BIAN Xianggang,LI Longfei,WANG Huayu,et al.Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J].Journal of Rocket Propulsion,2023,49(02):74.
[8]于溪尧,李楠,姜淼,等.预冷器入口流量周向不均匀性对流动换热的影响[J].火箭推进,2024,50(02):39.[doi:10.3969/j.issn.1672-9374.2024.02.004]
YU Xiyao,LI Nan,JIANG Miao,et al.Effect of circumferential non-uniformity of inlet flow on flow and heat transfer in a precooler[J].Journal of Rocket Propulsion,2024,50(02):39.[doi:10.3969/j.issn.1672-9374.2024.02.004]
[9]吴有亮,张成印,潘 浩,等.再生冷却燃气对流换热系数计算方法优化研究[J].火箭推进,2018,44(01):22.
WU Youliang,ZHANG Chengyin,PAN Hao,et al.Optimization for calculation method of gas convective heat
transfer coefficient inside regeneratively-cooled chamber[J].Journal of Rocket Propulsion,2018,44(02):22.
备注/Memo
收稿日期:2021-12-25; 修回日期:2022-02-26
基金项目:民用航天科研工程项目(D010103)
作者简介:吴有亮(1993—),男,硕士,工程师,研究领域为液体火箭发动机热防护设计。