PDF下载 分享
[1]马原,董妍,李剑,等.荷兰斜纹筛网有效孔隙直径的数值分析与模型构建[J].火箭推进,2023,49(03):26-33.
 MA Yuan,DONG Yan,LI Jian,et al.Numerical analysis and model establishment on effective pore diameter of Dutch twill weave[J].Journal of Rocket Propulsion,2023,49(03):26-33.
点击复制

荷兰斜纹筛网有效孔隙直径的数值分析与模型构建

参考文献/References:

[1] HARTWIG J W.Propellant management devices for low-gravity fluid management:Past,present,and future applications[J].Journal of Spacecraft and Rockets,2017,54(4):808-824.
[2] 马原,厉彦忠,王磊,等.低温推进剂在轨加注技术与方案研究综述[J].宇航学报,2016,37(3):245-252.
[3] MA Y,ZIMNIK D,DREYER M,et al.Investigation on cryo-wicking performance within metallic weaves under superheated conditions for screen channel liquid acquisition devices(LADs)[J].International Journal of Heat and Mass Transfer,2019,141:530-541.
[4] 马原,陈虹,邢科伟,等.低温推进剂网幕通道式液体获取装置性能研究进展[J].制冷学报,2019,40(3):1-7.
[5] KUDLAC M,JURNS J.Screen channel liquid acquisition devices for liquid oxygen[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2006.
[6] JURNS J,MCQUILLEN J,GABY J,et al.Bubble point measurements with liquid methane of a screen channel capillary liquid acquisition device[R].NASA/TM-215494.
[7] JURNS J M,HARTWIG J W.Liquid oxygen liquid acquisition device bubble point tests with high pressure LOx at elevated temperatures[J].Cryogenics,2012,52(4/5/6):283-289.
[8] HARTWIG J,MANN J A,DARR S R.Parametric analysis of the liquid hydrogen and nitrogen bubble point pressure for cryogenic liquid acquisition devices[J].Cryogenics,2014,63:25-36.
[9] HARTWIG J,MCQUILLEN J.Screen channel liquid-acquisition-device bubble point tests in liquid methane[J].Journal of Thermophysics and Heat Transfer,2014,29(2):364-375.
[10] HARTWIG J W.Screen channel liquid acquisition device bubble point tests in liquid nitrogen[J].Cryogenics,2016,74:95-105.
[11] HARTWIG J,CHATO D,MCQUILLEN J.Screen channel LAD bubble point tests in liquid hydrogen[J].International Journal of Hydrogen Energy,2014,39(2):853-861.
[12] MESEROLE J S,JONES O S.Pressurant effects on cryogenic liquid acquisition devices[J].Journal of Spacecraft and Rockets,1993,30(2):236-243.
[13] SAVAS A J,HARTWIG J W,MODER J P.Thermal analysis of a cryogenic liquid acquisition device under autogenous and non-condensable pressurization schemes[J].International Journal of Heat and Mass Transfer,2014,74:403-413.
[14] CONRATH M,DREYER M.Gas breakthrough at a porous screen[J].International Journal of Multiphase Flow,2012,42:29-41.
[15] CONRATH M,SMIYUKHA Y,FUHRMANN E,et al.Double porous screen element for gas-liquid phase separation[J].International Journal of Multiphase Flow,2013,50:1-15.
[16] HARTWIG J W,KAMOTANI Y.The static bubble point pressure model for cryogenic screen channel liquid acquisition devices[J].International Journal of Heat and Mass Transfer,2016,101:502-516.
[17] CAMAROTTI C,DENG O,DARR S,et al.Room temperature bubble point,flow-through screen,and wicking experiments for screen channel liquid acquisition devices[J].Applied Thermal Engineering,2019,149:1170-1185.
[18] SYMONS E.Wicking of liquids in screens[EB/OL].https://www.semanticscholar.org/paper/Wicking-of-liquids-in-screens-Symons/80e01bf3b2c22893e013cca27187
200846707724,1974.
[19] HARTWIG J,MANN J A.A predictive bubble point pressure model for porous liquid acquisition device screens[J].Journal of Porous Media,2014,17(7):587-600.
[20] HARTWIG J W,KAMOTANI Y.The static reseal pressure model for cryogenic screen channel liquid acquisition devices[J].International Journal of Heat and Mass Transfer,2016,99:31-43.
[21] HARTWIG J,DARR S.Influential factors for liquid acquisition device screen selection for cryogenic propulsion systems[J].Applied Thermal Engineering,2014,66(1/2):548-562.
[22] MA Y,LI Y Z,WANG L,et al.Investigation on isothermal wicking performance within metallic weaves for screen channel liquid acquisition devices(LADs)[J].International Journal of Heat and Mass Transfer,2019,135:392-402.
[23] 马原,孙靖阳,厉彦忠,等.增压速率对多孔金属筛网泡破压力影响的实验研究[J].西安交通大学学报,2021,55(11):192-198.
[24] 蒋玉婷,张鹏,颛瑞.高蒸发率下筛网通道式液体获取装置的金属筛网毛细性能研究[J].低温与超导,2021,49(1):6-15.
[25] 朱文杰,张瑞平,黄立钠,等.筛网LAD通道液氮动态出流性能研究[J].低温工程,2022(1):46-50.
[26] 刘畅,肖泽宁,胡声超,等.筛网通道液体获取装置压降模型及试验研究[J].导弹与航天运载技术,2021(1):56-60.
[27] 王晔,张婉雨,汪彬,等.多孔网幕泡破压力预测模型的建立及实验验证[J].化工学报,2022,73(3):1102-1110.
[28] MASOODI R,PILLAI K M.Wicking in porous materials:Traditional and modern modeling approaches[M].Boca Raton,FL:CRC Press,2012.

相似文献/References:

[1]于海磊,陈锋,郑勤生,等.低温推进剂液位监测系统设计[J].火箭推进,2010,36(03):54.
 Yu Hailei,Chen Feng,Zheng Qinsheng,et al.Design of monitoring system for cryogenic propellant level[J].Journal of Rocket Propulsion,2010,36(03):54.
[2]曹文庆,谭海林,李伟.低温发动机试验推进剂人口温度控制[J].火箭推进,2009,35(03):52.
 Cao Wenqing,Tan Hailin,Li Wei.Propellant inlet temperature control for cryogenic rocket engine tests[J].Journal of Rocket Propulsion,2009,35(03):52.
[3]杨永强,刘站国,徐浩海,等.液氧煤油发动机低温组元两相充填过程研究[J].火箭推进,2006,32(02):11.
 Yang Yongqiang,Liu Zhanguo,Xu Haohai.Research on two-phase filling process of cryogenic propellant for a LOX/Kerosene LRE[J].Journal of Rocket Propulsion,2006,32(03):11.
[4]薛国宇,陈志坚,王德忠,等.低温表面张力贮箱研究[J].火箭推进,2005,31(03):26.
 Xue Guoyu,Chen Zhijian,Wang Dezhong.Study on cryogenic surface tension propellant tank[J].Journal of Rocket Propulsion,2005,31(03):26.
[5]段文浩,张佳,王虹玥.数字式低温液位测量系统[J].火箭推进,2017,43(03):79.
 DUAN Wenhao,ZHANG Jia,WANG Hongyue.Digital measurement system for cryogenic liquid level[J].Journal of Rocket Propulsion,2017,43(03):79.
[6]张春伟,柴栋栋,马军强,等.低温推进剂致密化技术的发展综述[J].火箭推进,2023,49(03):1.
 ZHANG Chunwei,CHAI Dongdong,MA Junqiang,et al.Review on development of cryogenic propellant densification technology[J].Journal of Rocket Propulsion,2023,49(03):1.

备注/Memo

收稿日期:2022-08-10; 修回日期:2022-08-31
基金项目:国家自然科学基金青年项目(51906194); 中国博士后科学基金(2019M663701); 上海航天科技创新基金(SAST2020-018); 上海市科技计划项目(20YF1447900)
作者简介:马原(1991—),女,博士,副教授,研究领域为低温推进剂空间管理技术等。

更新日期/Last Update: 1900-01-01