航天推进技术研究院主办
GUO Tao,XU Yuan,ZHANG Jing,et al.Analysis on the measurement position refinement method of five-hole probe used in complex flow field[J].Journal of Rocket Propulsion,2023,49(03):48-55.
复杂流场中五孔探针测点加密方法分析
- Title:
- Analysis on the measurement position refinement method of five-hole probe used in complex flow field
- 文章编号:
- 1672-9374(2023)03-0048-08
- 分类号:
- V211.71
- 文献标志码:
- A
- 摘要:
- 针对五孔探针在测量复杂流场时,因测点数目有限而导致的部分流场信息丢失这一问题,研究了利用已测信息进行测点的二次加密布置,获得更为详细的流场信息的方法,并在叶栅流场中进行了数值模拟验证。结果表明:针对流动特征合理地选择判断参数,可以获得较好的加密预判。涡系影响区可以采用气流角变化作为判断参数,叶栅出口可以采用速度变化作为判断参数; 以判断参数的一阶差分为基础的探针测点加密算法,对流场中的速度剧烈变化区域及涡系影响区进行测点加密布置,可以有效避免流动信息丢失,从而获得更加完整的流场信息。
- Abstract:
- In order to address the problem of the flow field character losing when measuring the complex flow filed with five-holes probe due to the limited number of measurement points, a refinement method to obtain the detailed flow field was investigated by using the measured flow fields information to refine the measurement positions. The method was also verified by numerical simulations in a cascade flow field. The results show that the effective refine decision can be obtained by selecting reasonable parameters for flow characteristics. The change of flow angle may be used as the judgement parameter in the vortex-influenced area, and the change of velocity can be regarded as the judgement parameter near the exit of the cascade between the pressure surface and the suction surface. For the complex flow fields, the refinement method of probe position based on the first-order difference of judgement parameters can obtain the complete flow field information by refining the measuring points in the area of dramatic velocity change and affected by vortex system.
参考文献/References:
[1] MORRISON G L,SCHOBEIRI M T,PAPPU K R.Five-hole pressure probe analysis technique[J].Flow Measurement and Instrumentation,1998,9(3):153-158.
[2] 王涛,李飞行.五孔探针理论校准方法研究[J].工程与试验,2012,52(3):12-16.
[3] 汪涛,姜健,史建邦.进气道/发动机相容性试飞中总压畸变数据的采集与处理[J].燃气涡轮试验与研究,2012,25(2):54-58.
[4] 熊兵,陈洪敏,文璧,等.基于四孔压力探针技术的涡轮转子出口流场测量[J].燃气涡轮试验与研究,2012,25(S1):6-10.
[5] 于成海,王偲臣,马宁,等.动叶下游非定常特征的实验[J].航空动力学报,2018,33(2):422-430.
[6] 中国燃气涡轮研究院.航空燃气涡轮发动机轴流涡轮气动性能试验方法[S].HB 7081—2012.
[7] 付少林,杨荣菲,刘长青,等.测试布局对涡轮效率的影响研究[J].推进技术,2019,40(11):2464-2472.
[8] SCHNEIDER C,ROSE M G,STAUDACHER S,et al.On the assessment of turbine efficiency from experimental data for low pressure turbines at low Reynolds numbers[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition.Copenhagen,Denmark:ASME,2013.
[9] SCHMITZ J T,PEREZ E,MORRIS S C,et al.Highly loaded low-pressure turbine:Design,numerical,and experimental analysis[J].Journal of Propulsion and Power,2015,32(1):142-152.
[10] STOLL F,TREMBACK J W,ARNAIZ H.Effect of number of probes and their orientation on the calculation of several compressor face distortion descriptors[R].NASATM-72859.
[11] DOMPIERRE J,VALLET M G,FORTIN M,et al.Anisotropic mesh adaptation:Towards a solver and user independent CFD[C]//35th Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,1997.
[12] LEPAGE C,SUERICH-GULICK F,HABASHI W.Anisotropic 3-D mesh adaptation on unstructured hybrid meshes[C]//40th AIAA Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,2002.
[13] PERAIRE J,PEIR? J,MORGAN K.Adaptive remeshing for three-dimensional compressible flow computations[J].Journal of Computational Physics,1992,103(2):269-285.
[14] BAI W,QIU Z,LI L.Recent efforts to establish adaptive hybrid grid computing capability at ACTRI[J].Computational Fluid Dynamics Journal,2007,7(4):438-449.
[15] DANNENHOFFER I F,BARON J.Grid adaptation for the 2-D Euler equations[C]//23rd Aerospace Sciences Meeting.Reston,Virginia:AIAA,1985.
[16] DANNENHOFFER J F.Grid adaptation for complex two-dimensional transonic flows[D].Cambridge,MA:Massachusetts Institute of Technology,1987.
[17] PERAIRE J,VAHDATI M,MORGAN K,et al.Adaptive remeshing for compressible flow computations[J].Journal of Computational Physics,1987,72(2):449-466.
[18] WARREN G,ANDERSON W,THOMAS J,et al.Grid convergence for adaptive methods[C]//10th Computational Fluid Dynamics Conference.Reston,Virginia:AIAA,1991.
[19] 刘习洲,王城璟,王琥.基于h型自适应有限元法在薄板冲压成型中的应用[J].图学学报,2021,42(6):970-978.
[20] 王建华,钟俊彬,陈振建.自适应网格加密求解洞室围岩塑性区[J].岩土力学,2000,21(3):201-204.
[21] 张衡.低压涡轮叶片表面边界层流动特性研究[D].哈尔滨:哈尔滨工业大学,2016.
备注/Memo
收稿日期:2022-05-24; 修回日期:2022-06-30
基金项目:国家科技重大专项(J2019-II-0022-0043)
作者简介:郭涛(1976—),男,博士,高级工程师,研究领域为动力系统高温部件的传热与冷却技术。