航天推进技术研究院主办
YAO Shangpeng,HUANG Hong,ZHAO Jiamin,et al.Typical fault simulation and identification system design for turbopump[J].Journal of Rocket Propulsion,2023,49(03):96-104.
涡轮泵典型故障仿真与辨识系统设计
- Title:
- Typical fault simulation and identification system design for turbopump
- 文章编号:
- 1672-9374(2023)03-0096-09
- 分类号:
- V434.21
- 文献标志码:
- A
- 摘要:
- 涡轮泵是液体火箭发动机的关键部件,工作环境恶劣,故障率较高。特别是复杂高温、高压燃料冲击的转子系统,极易发生不平衡、不对中和叶片掉块故障。迫切需要探究涡轮泵转子常见的故障机理,阐明故障特征,建立典型故障的辨识系统。通过分析故障力模型,分别建立了考虑转子不平衡、不对中和叶片掉块的动力学模型,确定涡轮泵转子振动特征,明确转子时域、频域信号以及轴心轨迹。进一步搭建基于Matlab GUI平台的涡轮泵典型故障仿真与辨识系统,并对测试数据开展处理。研究表明,不平衡故障时域波形为正弦曲线,1倍频占优,椭圆形轴心轨迹; 不对中故障时域波形由2组不同的正弦曲线组成,2倍频占优,“内8”形轴心轨迹; 叶片掉块时域波形存在突变现象,1倍频占优,轴心轨迹在掉块发生前稳定,掉块发生后较为杂乱。结果表明,信号频域特征是故障辨识的关键,辅以时域特征,能准确辨识出3种典型故障,该系统能够为涡轮泵转子故障辨识设计提供技术支撑。
- Abstract:
- Turbine pump is a key component of liquid rocket engine, with harsh working environment and high failure rate. Especially, the rotor system with complex high temperature and high pressure fuel impact is highly prone to unbalance, misalignment and blade drop block failures. It is urgent to explore the common fault mechanism of turbopump rotor, clarify the fault characteristics and establish the identification system of typical failures. In this paper, by analyzing the failure force model, the dynamics models considering the rotor unbalance, misalignment and blade dropout are established respectively, to determine the vibration characteristics of the turbine pump rotor and clarify the rotor time domain and frequency domain signals as well as the axial trajectory. Further, a typical fault simulation and identification system of turbine pump based on Matlab GUI platform is built and the test data are processed. The research shows that the time domain waveform of the unbalanced fault is a sine curve with 1 frequency dominance and elliptical axis trajectory; the time domain waveform of the misalignment fault is composed of two different sets of sine curves with 2 frequency dominance and "inner 8" shaped axis trajectory; the time domain waveform of the blade block drop has abrupt changes with 1 frequency dominance, and the axis trajectory is stable before the block drop occurs but more chaotic after the block drop occurs. The above research results show that the signal frequency domain characteristics are crucial to fault identification. Supplemented by time domain characteristics, three typical faults can be accurately identified, and the system can provide technical support for the fault identification design of turbine pump rotor.
参考文献/References:
[1] 郑雄,杨勇,姚世东,等.法尔肯9可重复使用火箭发展综述[J].导弹与航天运载技术,2016(2):39-46.
[2] 康建斌,谢泽兵,郑宏涛,等.火箭子级垂直返回海上平台制导、导航和控制技术研究[J].导弹与航天运载技术,2016(6):32-35.
[3] JUE F,KUCK F.Space shuttle main engine(SSME)options for the future shuttle[C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,2002.
[4] ZHANG Y L,WU J J,HUANG M C,et al.Liquid-propellant rocket engine health-monitoring techniques[J].Journal of Propulsion and Power,1998,14(5):657-663.
[5] MARKOU M,SINGH S.Novelty detection:A review.Part 1:statistical approaches[J].Signal Processing,2003,83(12):2481-2497.
[6] 张振臻,陈晖,高玉闪,等.液体火箭发动机故障诊断技术综述[J].推进技术,2022,43(6):20-38.
[7] 邓晨,薛薇,郑孟伟,等.大推力氢氧补燃循环发动机故障仿真[J].计算机测量与控制,2019,27(11):48-53.
[8] HONG T,LI H.Turbopump fault detection algorithm based on protruding frequency components RMS and SVM[C]//2013 IEEE International Conference on Mechatronics and Automation.New York:IEEE,2013.
[9] HU L,HU N Q,FAN B,et al.Application of novelty detection methods to health monitoring and typical fault diagnosis of a turbopump[J].Journal of Physics:Conference Series,2012,364:012128.
[10] ZHONG F L,LI H,WU Q,et al.A fault detection algorithm for turbopump based on lifting wavelet and LMS[C]//2013 IEEE International Conference on Mechatronics and Automation.New York:IEEE,2013.
[11] 张国渊,梁茂檀,郭进兴,等.不对中齿轮联轴器—轴承—转子系统动力特性[J].航空动力学报,2022,37(2):225-234.
[12] 金路,王俨剀,王彤,等.涡轮泵转子失稳故障分析[J].火箭推进,2020,46(4):23-30.
JIN L,WANG Y K,WANG T,et al.Analysis and diagnosis of turbine pump rotor instability[J].Journal of Rocket Propulsion,2020,46(4):23-30.
[13] JIANG P,XING Y Y,WANG B,et al.Reliability evaluation for turbo pump component in two-phase development with no failure data[C]//2019 Prognostics and System Health Management Conference.New York:IEEE,2019.
[14] VARTHA V,ARUN KUMAR M S,MATHEW S,et al.Failure analysis of ball-bearing of turbo-pump used in liquid rocket engine[J].Materials Science Forum,2015,830/831:709-712.
[15] AISWARYA N,SUJA PRIYADHARSINI S,MONI K S.An efficient approach for the diagnosis of faults in turbo pump of liquid rocket engine by employing FFT and time-domain features[J].Australian Journal of Mechanical Engineering,2018,16(3):163-172.
[16] 杨懿,陈文丽,王永鹏,等.基于Hilbert-Huang变换的液体火箭发动机涡轮泵故障分析[J].清华大学学报(自然科学版),2022,62(3):540-548.
[17] 杨硕.基于支持向量机的涡轮泵故障检测算法研究[D].成都:电子科技大学,2015.
[18] 夏鲁瑞,胡茑庆,秦国军.转速波动状态下涡轮泵典型故障诊断方法[J].推进技术,2009,30(3):342-346.
[19] 夏鲁瑞,胡茑庆,秦国军,等.涡轮泵启动过程振动故障检测方法[J].航空动力学报,2010,25(3):704-708.
[20] YIN Y C,LIU J F,WU X H,et al.An E-Bayesian estimation for reliability assessment of a success-failure type device[C]//2013 International Conference on Quality,Reliability,Risk,Maintenance,and Safety Engineering.New York:IEEE,2013.
相似文献/References:
[1]张晨曦,马晓丹.火箭发动机涡轮泵集成设计系统[J].火箭推进,2015,41(04):79.
ZHANG Chenxi,MA Xiaodan.Integration design system for turbo pump
in rocket engine[J].Journal of Rocket Propulsion,2015,41(03):79.
[2]李 彤,刘站国,窦 昱,等.涡轮泵水力试验系统扭矩现场校准技术研究[J].火箭推进,2015,41(03):73.
LI Tong,LIU Zhan-guo,DOU Yu,et al.Field calibration technology for torque of
turbo pump hydraulic test system[J].Journal of Rocket Propulsion,2015,41(03):73.
[3]窦 唯,刘占生.液体火箭发动机涡轮泵转子弯扭耦合振动研究[J].火箭推进,2012,38(04):17.
DOU Wei,LIU Zhan-sheng.Research on bend-twist coupling vibration of liquid rocket engine turbopump rotors[J].Journal of Rocket Propulsion,2012,38(03):17.
[4]唐 飞,李家文.诱导轮平面叶栅汽蚀不稳定现象的数值分析[J].火箭推进,2011,37(01):34.
TANG Fei,LI Jia-wen.Numerical analysis of instable cavitation phenomenon in 2D blade cascade of inducer[J].Journal of Rocket Propulsion,2011,37(03):34.
[5]白东安,段增斌,张翠儒.涡轮泵端面密封性能与漏气量影响研究[J].火箭推进,2010,36(01):38.
Bai Dong'an,Duan Zenbin,Zhang Cuiru.Effects of leaking rate on turbopump end-face sealing performance[J].Journal of Rocket Propulsion,2010,36(03):38.
[6]邓长华,周云端.涡轮泵环形颗粒阻尼器设计[J].火箭推进,2009,35(05):29.
Deng Changhua,Zhou Yunduan.Design of circular particle damper for turbopump[J].Journal of Rocket Propulsion,2009,35(03):29.
[7]白东安.涡轮泵超低工况性能研究[J].火箭推进,2008,34(03):13.
Bai Dong'an.Research on the turbo-pump performance under
ultra--low operation condition[J].Journal of Rocket Propulsion,2008,34(03):13.
[8]凌桂龙,张黎辉,唐家鹏,等.泵压式氢/氧液体火箭发动机质量分析[J].火箭推进,2007,33(01):1.
Ling Guilong Zhang Lihui Tang Jiapeng.Mass analysis of pump-pressurized hydrogen/oxygen liquid propellant rocket engine[J].Journal of Rocket Propulsion,2007,33(03):1.
[9]黄智勇,李昌奂,黄红,等.高工况涡轮泵轴系状态对工作可靠性的影响[J].火箭推进,2007,33(01):32.
Huang Zhiyong,Li Changhuan,Huang Hong.The effect of high operating condition turbopump shafting status on reliability[J].Journal of Rocket Propulsion,2007,33(03):32.
[10]徐悦,田爱梅.基于CFD的涡轮泵转子密封流体激振研究进展[J].火箭推进,2005,31(01):8.
Xu Yue,Tian Aimei.Progress of investigation on turbopump annular seal fluid-induced vibration based on CFD[J].Journal of Rocket Propulsion,2005,31(03):8.
备注/Memo
收稿日期:2022-06-07; 修回日期:2022-07-11
基金项目:国家自然科学基金项目(12102348)
作者简介:姚尚鹏(1999—),男,硕士,研究领域为液体火箭发动机故障诊断及健康管理。