航天推进技术研究院主办
YE Shurui,HAO Wenyu,SUN Zhi,et al.Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing[J].Journal of Rocket Propulsion,2023,49(04):26-35.
考虑增材制造悬垂约束的传力机架轻量化设计方法
- Title:
- Lightweight design method of transmission frame structure considering the overhang constraint of additive manufacturing
- 文章编号:
- 1672-9374(2023)04-0026-10
- Keywords:
- topology optimization; additive manufacturing; lightweight; frame; moving morphable component
- 分类号:
- V421.4
- 文献标志码:
- A
- 摘要:
- 运载火箭发动机传力机架是将发动机的推力载荷传递至箭体的关键连接部件。对质量占比较大的发动机传力机架结构进行轻量化优化,可以有效地提升火箭发动机的推重比,实现结构的高效承载及使用增材制造技术稳定生产。基于移动可变形组件法(moving morphable component,MMC)框架,考虑增材制造过程中的悬垂约束,提出了一种运载火箭发动机传力机架结构的轻量化设计方法。此方法能够考虑刚度、质量、设计空间、制造约束等设计要求,在限制结构质量(体积)的约束条件下,实现结构刚度的最大化。推导了相关优化问题列式,给出了优化流程,并进行了若干典型算例。通过对优化结果的重分析可知:优化结果满足运载火箭发动机传力机架的刚度要求及传力机架材料的最大应力要求,在质量上相比传统的机架结构有显著优势,优化结果中不存在大悬挑结构且满足增材制造特有的悬垂约束,验证了此方法的有效性。
- Abstract:
- The transmission frame structure of lunch vehicles is the key connecting part which transmits the thrust load of the engine to the rocket body. The lightweight optimization of the transmission frame structures with a relatively large mass can effectively improve the thrust weight ratio of the lunch vehicles, realize the high-efficiency bearing of the structure and stable production by additive manufacturing technology. In this paper, based on the framework of moving morphable component(MMC)and considering the overhang constraint in additive manufacturing, a lightweight design method of lunch vehicle transmission frame structure was proposed. This method can consider the design requirements such as stiffness, mass, design space and manufacturing constraints, and maximize the structural stiffness under the constraint of limiting the weight(volume)of the structure. This paper deduces the formulation of related optimization problems, gives the optimization process, and shows some typical examples. Finally, through the analysis of the optimization results, the optimization results meet the stiffness requirements of the transmission frame structure of the launch vehicle engine and the maximum stress requirements of the transmission frame material, which have significant advantages over the traditional frame structure in terms of quality. There is no large cantilever structure in the optimization results, and the suspension constraints unique to additive manufacturing are satisfied, which proves the effectiveness of this method.
参考文献/References:
[1] 王玮,张众,陈振知,等.现役运载火箭运载能力提升措施研究[J].上海航天(中英文),2020,37(S2):59-64.
[2] 王国辉,曾杜娟,刘观日,等.中国下一代运载火箭结构技术发展方向与关键技术分析[J].宇航总体技术,2021,5(5):1-11.
[3] 顾名坤,何巍,唐科,等.中国液体运载火箭结构系统发展规划研究[J].宇航总体技术,2021,5(2):55-67.
[4] 郝宝新,周志成,曲广吉,等.大型航天器桁架式主承力结构构型拓扑优化研究[J].航天器工程,2014,23(2):44-51.
[5] 张卫红,章胜冬,高彤.薄壁结构的加筋布局优化设计[J].航空学报,2009,30(11):2126-2131.
[6] 王立朋,何飞,郭文杰,等.载人运载火箭飞船支撑结构动响应优化设计[J].载人航天,2017,23(2):168-172.
[7] 谭莉,程博,贾铎,等.多工况下的发动机支架拓扑优化设计[J].航空发动机,2022,48(2):90-95.
[8] 谷小军,徐珉轲,张薇,等.重型运载火箭发动机机架与舱段传力结构一体化拓扑优化设计[J].火箭推进,2022,48(2):27-35.
GU X J,XU M K,ZHANG W,et al.Integrated topology optimization design of heavy rocket engine frame and segment force transmission structure[J].Journal of Rocket Propulsion,2022,48(2):27-35.
[9] 谷小军,李城彬,王文龙,等.拓扑优化与增材制造技术的融合及其在民用飞行器设计中的应用[J].航空制造技术,2022,65(14):14-20.
[10] 刘书田,李取浩,陈文炯,等.拓扑优化与增材制造结合:一种设计与制造一体化方法[J].航空制造技术,2017,60(10):26-31.
[11] 郑伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(6):1-6.
ZHENG W,LI H L,CHEN X H.Application prospect of laser rapid prototyping technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(6):1-6.
[12] BENDSØE M P.Optimal shape design as a material distribution problem[J].Structural Optimization,1989,1(4):193-202.
[13] ZHOU M,ROZVANY G I N.The COC algorithm,Part II:Topological,geometrical and generalized shape optimization[J].Computer Methods in Applied Mechanics and Engineering,1991,89(1/2/3):309-336.
[14] BENDSØE M P,SIGMUND O.Topology,optimization:Theory,methods,and applications[M].2nd ed.Berlin:Springer,2003.
[15] DÍAZ A,SIGMUND O.Checkerboard patterns in layout optimization[J].Structural Optimization,1995,10(1):40-45.
[16] GUEST J K,PRÉVOST J H,BELYTSCHKO T.Achieving minimum length scale in topology optimization using nodal design variables and projection functions[J].International Journal for Numerical Methods in Engineering,2004,61(2):238-254.
[17] GUEST J K.Imposing maximum length scale in topology optimization[J].Structural and Multidisciplinary Optimization,2009,37(5):463-473.
[18] SIGMUND O,PETERSSON J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards,mesh-dependencies and local minima[J].Structural Optimization,1998,16(1):68-75.
[19] GUO X,ZHANG W S,ZHONG W L.Doing topology optimization explicitly and geometrically:A new moving morphable components based framework[J].Journal of Applied Mechanics,2014,81(8):081009.
[20] 李佳霖,赵剑,孙直,等.基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计[J].力学学报,2022,54(1):244-251.
[21] LANGELAAR M.An additive manufacturing filter for topology optimization of print-ready designs[J].Structural and Multidisciplinary Optimization,2017,55(3):871-883.
[22] GUO X,ZHANG W S,ZHANG J,et al.Explicit structural topology optimization based on moving morphable components(MMC)with curved skeletons[J].Computer Methods in Applied Mechanics and Engineering,2016,310:711-748.
[23] ZHANG W S,SONG J F,ZHOU J H,et al.Topology optimization with multiple materials via moving morphable component(MMC)method[J].International Journal for Numerical Methods in Engineering,2018,113:1653-1675.
[24] ALLAIRE G,JOUVE F,TOADER A M.Structural optimization using sensitivity analysis and a level-set method[J].Journal of Computational Physics,2004,194(1):363-393.
[25] WANG M Y,WANG X M,GUO D M.A level set method for structural topology optimization[J].Computer Methods in Applied Mechanics and Engineering,2003,192(1/2):227-246.
[26] ZHANG W S,LI D,YUAN J,et al.A new three-dimensional topology optimization method based on moving morphable components(MMCs)[J].Computational Mechanics,2017,59(4):647-665.
[27] ZHANG W S,ZHONG W L,GUO X.Explicit layout control in optimal design of structural systems with multiple embedding components[J].Computer Methods in Applied Mechanics and Engineering,2015,290:290-313.
[28] ZHANG W S,YUAN J,ZHANG J,et al.A new topology optimization approach based on moving morphable components(MMC)and the ersatz material model[J].Structural and Multidisciplinary Optimization,2016,53(6):1243-1260.
[29] SVANBERG K.The method of moving asymptotes:A new method for structural optimization[J].International Journal for Numerical Methods in Engineering,1987,24(2):359-373.
相似文献/References:
[1]谭永华,赵剑,张武昆,等.融合增材制造的液体火箭发动机创新设计方法与应用[J].火箭推进,2023,49(04):1.
TAN Yonghua,ZHAO Jian,ZHANG Wukun,et al.Innovative design method and application of liquid rocket engine integrated additive manufacturing[J].Journal of Rocket Propulsion,2023,49(04):1.
[2]陈锐达,徐辉,陈泓宇,等.1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(04):17.
CHEN Ruida,XU Hui,CHEN Hongyu,et al.Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J].Journal of Rocket Propulsion,2023,49(04):17.
[3]袁迪野,吕宇超,李志立,等.面向增材制造的内置流道一体化支架拓扑优化设计[J].火箭推进,2023,49(04):36.
YUAN Diye,LYU Yuchao,LI Zhili,et al.Topology optimization design of integrated bracket with embedded pipelines for additive manufacturing[J].Journal of Rocket Propulsion,2023,49(04):36.
[4]孔维鹏,谢恒,王晓丽.基于激光选区熔化技术的大尺寸喷注器设计[J].火箭推进,2023,49(04):68.
KONG Weipeng,XIE Heng,WANG Xiaoli.Design of large dimensions injector based on selective laser melting technology[J].Journal of Rocket Propulsion,2023,49(04):68.
备注/Memo
收稿日期:2022-11-15; 修回日期:2023-01-18
基金项目:国家重点研发计划(2020YFB1709401); 国家自然科学基金项目(11872138,11821202)
作者简介:叶书睿(1999—),男,博士,研究领域为计算力学。
通信作者:郭旭(1971—),男,博士,教授,研究领域为结构优化、计算力学、固体力学等。