航天推进技术研究院主办
KONG Weipeng,XIE Heng,WANG Xiaoli.Design of large dimensions injector based on selective laser melting technology[J].Journal of Rocket Propulsion,2023,49(04):68-73.
基于激光选区熔化技术的大尺寸喷注器设计
- Title:
- Design of large dimensions injector based on selective laser melting technology
- 文章编号:
- 1672-9374(2023)04-0068-06
- Keywords:
- liquid rocket engine; selective laser melting; additive manufacturing; injector; coaxial shear nozzle; cold flow test; hot-fire test
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 为研究激光选区熔化技术应用于大尺寸液体火箭发动机喷注器的可行性及最佳方案,按照先喷注单元后大尺寸喷注器的思路开展了设计研究。基于激光选区熔化技术设计了4种不同方案的喷注单元试验件,并进行了冷态液流试验对比。通过喷注单元对比试验得出直接采用激光选区熔化技术成型的喷嘴不适合直接用于大尺寸喷注器设计。根据喷注单元对比结果,选择了大尺寸喷注器的设计方案,生产了大尺寸喷注器,并进行了热试验考核。结果表明:采用激光选区熔化技术成型毛坯、机加工关键尺寸的设计方案为大尺寸喷注器的最佳方案。
- Abstract:
- In order to study the feasibility and the optimum scheme of selective laser melting technology applied to the injector of large dimensions liquid rocket engine, the design research was carried out according to the idea of injection unit first and then large dimensions injector. Four different schemes of injection unit test pieces were designed based on selective laser melting technology, and the cold flow test was carried out and the results were compared. Through the comparative test of injection unit, it was concluded that the injector formed by selective laser melting technology was not suitable for the design of large dimensions injector directly. According to the comparison results of the injection unit, the design scheme of the large dimensions injector was selected, the large dimensions injector was produced, and the liquid flow test and hot-fire test were carried out. The results show that the design scheme of forming blank and machining key dimensions by selective laser melting technology is the best scheme for large dimensions injector.
参考文献/References:
[1] 顾冬冬,张红梅,陈洪宇,等.航空航天高性能金属材料构件激光增材制造[J].中国激光,2020,47(5):32-55.
[2] 任慧娇,周冠男,从保强,等.增材制造技术在航空航天金属构件领域的发展及应用[J].航空制造技术,2020,63(10):72-77.
[3] 刘琦,梁晓康,陈济轮,等.增材制造技术在国外航天领域的研究应用现状[J].导弹与航天运载技术,2016(6):103-106.
[4] 李涤尘,鲁中良,田小永,等.增材制造:面向航空航天制造的变革性技术[J].航空学报,2022,43(4):525387.
[5] 李海涛,谢书凯,张亮,等.增材制造技术在航天制造领域的应用及发展[J].中国航天,2017(1):28-32.
[6] GRADL P R,PROTZ C,GREENE S E,et al.Development and hot-fire testing of additively manufactured copper combustion chambers for liquid rocket engine applications[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2017.
[7] GRADL P R,PROTZ C S.Technology advancements for channel wall nozzle manufacturing in liquid rocket engines[J].Acta Astronautica,2020,174:148-158.
[8] BLAKEY-MILNER B,GRADL P,SNEDDEN G,et al.Metal additive manufacturing in aerospace:A review[J].Materials & Design,2021,209:110008.
[9] 田宗军,顾冬冬,沈理达,等.激光增材制造技术在航空航天领域的应用与发展[J].航空制造技术,2015,58(11):38-42.
[10] HAYNES J.Additive manufacturing for liquid rocket engine systems[C]//63rd International Astronautical Congress.Naples,Italy:IAC,2012.
[11] 李晓红,祁萌,朱洪武,等.先进制造技术助力 “太空发射系统”研制[J].国防制造技术,2013(4):5-9.
[12] THOMAS D.Center overview and additive manufacturing at MSFC[Z].2014.
[13] JONES C P,ROBERTSON E H,KOELBL M,et al.Additivemanufacturing a liquid hydrogen rocket engine[EB/OL].https://www.semanticscholar.org/paper/Additive-Manufacturing-a-Liquid-Hydrogen-Rocket-Jones-Robertson/00e
0c78d60fe84b5a540b1d10499ea0862d3544c,2016.
[14] SOLLER S,BEHR R,BEYER S,et al.Design and testing of liquid propellant injectors for additive manufactur-ing[EB/OL].https://www.semanticscholar.org/paper/Design-and-Testing-of-Liquid-Propellant-Injectors-Soller-Be
hr/de260de4298870daa231c30bfb7fd0e9db7b0fdc,2017.
[15] SOLLER S,BARATA A,BEYER S,et al.Selective laser melting(SLM)of Inconel 718 and stainless steel injectors for liquid rocket engines[C]//Space Propulsion Conference 2016.Rome:[s.n.],2016.
[16] GRADL P R,GREENE S E,PROTZ C,et al.Additive manufacturing of liquid rocket engine combustion devices:A summary of process developments and hot-fire testing results[C]//2018 Joint Propulsion Conference.Reston,Virginia:AIAA,2018.
[17] 张武昆,谭永华,高玉闪,等.液体火箭发动机增材制造技术研究进展[J].推进技术,2022,43(5):29-44.
[18] 孙纪国,何学青,阳代军,等.大推力氢氧发动机关键制造技术[J].火箭推进,2022,48(2):117-126.
SUN J G,HE X Q,YANG D J,et al.Key manufacturing technology for large thrust LH2/LOx cycle engine[J].Journal of Rocket Propulsion,2022,48(2):117-126.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(04):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(04):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(04):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(04):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(04):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(04):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(04):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(04):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(04):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(04):15.
备注/Memo
收稿日期:2022-11-05; 修回日期:2023-01-13
基金项目:国家装备预研航天科技联合基金(6141B061207)
作者简介:孔维鹏(1992—),男,博士,研究领域为液体火箭发动机燃烧装置设计。