航天推进技术研究院主办
BIAN Xianggang,LI Longfei,WANG Huayu,et al.Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing[J].Journal of Rocket Propulsion,2023,49(04):74-81.
基于3D打印的过氧化氢/煤油再生冷却推力室设计及试验
- Title:
- Design and experiment of hydrogen peroxide/kerosene thrust chamber with regenerative cooling based on 3D printing
- 文章编号:
- 1672-9374(2023)04-0074-08
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 为了实现过氧化氢/煤油推力室关键技术的快速验证,开展了基于3D打印快速制造的推力室设计及试验。首先针对设计指标,充分利用3D打印零件少、连接强度高、结构质量轻等优点,完成过氧化氢/煤油推力室的设计; 然后利用商用软件Fluent对设计方案进行快速燃烧数值仿真,获得设计工况推力室压强、温度、流线以及各组分质量分数分布等,并对燃烧性能进行分析,完成设计方案的优化; 最后通过长程热试车对推力室的性能进行考核。结果表明:3D打印推力室结构可靠性高、冷却性能好、燃烧性能高,满足设计指标要求,相比于传统机械加工工艺,缩短50%研制周期,降低40%制造成本,减少50%零件数量,减轻20%质量。充分展现了3D打印技术在推力室关键技术验证阶段的周期短、成本低、可靠性高等优势。
- Abstract:
- In order to achieve the rapid verification of key technologies of hydrogen peroxide/kerosene thrust chamber, the design and test of thrust chamber based on 3D printing rapid manufacturing was conducted. Firstly, according to the design index, the design of hydrogen peroxide/kerosene thrust chamber was completed by utilizing the advantages of 3D printing, such as fewer parts, high connection strength and light structural weight. Then, the commercial software Fluent was used to perform the rapid numerical simulation of combustion on the design scheme, and the pressure, temperature, streamline, and mass fraction of each component in the thrust chamber under the design conditionwere obtained. The combustion performance was analyzed and the optimization of the design scheme was completed. Finally, the performance of the thrust chamber was evaluated through the long-term hot test. The results show that the 3D printing thrust chamber has high structural reliability, good cooling performance, high combustion performance, and meets the design requirements. Compared to the traditional mechanical processing techniques, it shortens the development cycle by 50%, reduces manufacturing costs by 40%, reduces the number of parts by 50%, and reduces weight by 20%. At the same time, it fully shows the advantages of the 3D printing technology in the key technology verification stage of the thrust chamber, such as short cycle, low cost and high reliability.
参考文献/References:
[1] VENTURA M,MULLENS P.The use of hydrogen peroxide for propulsion and power[C]//35th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1999.
[2] WHITEHEAD J C,DITTMAN M D,LEDEBUHR A G.Progress toward hydrogen peroxide micropulsion[EB/OL].https://www.researchgate.net/publication/255019195_Progress_toward_hydrogen_peroxide_micropulsion,1999.
[3] 武瑞刚,韩利萍,楚蓓蓓,等.3D打印技术在航天企业的应用[J].机械工程与自动化,2020(6):225-226.
[4] 黄卫东.材料3D打印技术的研究进展[J].新型工业化,2016,6(3):53-70.
[5] 左蔚,宋梦华,杨欢庆,等.增材制造技术在液体火箭发动机应用述评[J].火箭推进,2018,44(2):55-65.
ZUO W,SONG M H,YANG H Q,et al.Application of additive manufacturing technology in liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(2):55-65.
[6] 杨开.NASA为大尺寸发动机组件开发新型3D打印技术[J].航天制造技术,2020(5):70.
[7] 王治军,常新龙,田干.液体火箭发动机推力室设计[M].北京:国防工业出版社,2014.
[8] 王镜淇,王成刚,陈雪娇,等.RBCC组合动力用液体推进剂研究进展[J].火箭推进,2022,48(6):101-112.
WANG J Q,WANG C G,CHEN X J,et al.Research progress of liquid propellant development for RBCC engine[J].Journal of Rocket Propulsion,2022,48(6):101-112.
[9] 凌前程,林革,刘志让.过氧化氢/煤油双组元发动机催化分解点火研究[C]//第五届海内外华人航天科技研讨会论文集.西安:中国宇航学会,2004.
[10] HAUTMAN D,ROSFJORD T.Transverse liquid injection studies[C]//26th Joint Propulsion Conference.Reston,Virginia:AIAA,1990.
[11] LIN K C,KENNEDY P,JACKSON T.Penetration heights of liquid jets in high-speed crossflows[C]//40th AIAA Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,2002.
[12] CHEN T,SMITH C,SCHOMMER D,et al.Multi-zone behavior of transverse liquid jet in high-speed flow[C]//31st Aerospace Sciences Meeting.Reston,Virginia:AIAA,1993.
[13] MAZALLON J,DAI Z,FAETH G.Aerodynamic primary breakup at the surface of nonturbulent round liquid jets in crossflow[C]//36th AIAA Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,1998.
[14] WU P K,KIRKENDALL K A,FULLER R P,et al.Breakup processes of liquid jets in subsonic crossflows[J].Journal of Propulsion and Power,1997,13(1):64-73.
[15] 王振国.液体火箭发动机燃烧过程建模与数值仿真[M].北京:国防工业出版社,2012.
[16] 庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用[M].长沙:国防科技大学出版社,1995.
[17] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
[18] 郭康康,聂万胜,刘瑜,等.小型气氧/煤油火箭发动机试验及内流场数值模拟[J].导弹与航天运载技术,2018(6):43-48.
备注/Memo
收稿日期:2022-12-08; 修回日期:2023-01-07
作者简介:卞香港(1995—),男,硕士,工程师,研究领域为液体火箭发动机推力室设计。