航天推进技术研究院主办
BAI Meishan,YU Xiqiao,LU Wenjie,et al.Injector flow distribution method of a hydroxylamine nitrate thruster[J].Journal of Rocket Propulsion,2023,49(05):99-106.
硝酸羟胺发动机喷注器特种流量分配方法
- Title:
- Injector flow distribution method of a hydroxylamine nitrate thruster
- 文章编号:
- 1672-9374(2023)05-0099-08
- 分类号:
- V434.24
- 文献标志码:
- A
- 摘要:
- 硝酸羟胺(HAN)发动机如果采用传统肼类均匀分配喷注器,那么在靠近喷注器一段距离的催化床内,中心温度低于边缘温度,中心位置反应物转化率低于边缘位置,并且中心位置反应物质量分数高于边缘位置,该不均匀性将影响发动机工作寿命。针对HAN发动机喷注器采用传统设计方案容易使得催化床中心过载的问题,提出了一种“外密内疏”流量分配喷注器设计方法,并给出了该方法的设计理论。开展了基于传统喷注器结构和新型“外密内疏”喷注器结构的60 N HAN发动机热试车试验,对比结果表明,传统均匀分配喷注器的60 N HAN发动机工作680 s后发动机失效,而采用新型特种流量分配方案喷注器的发动机可较稳定地完成1 200 s长稳态工作。提出的新型喷注器设计方法为长寿命HAN发动机工程应用提供了参考。
- Abstract:
- If the traditional hydrazine-type uniformly distributed injector was used in a hydroxylammonium nitrate(HAN)thruster, the temperature in the center of the catalyst bed near the injector is lower than the temperature on the edge, and the conversion rate of the reactants in the center is lower than that on the edge, and the reactant mass fraction in the center is higher than that on the edge, which will affect the operating life of the thruster. Aiming at the problem that the center of the catalyst bed is easy to overload by using the traditional scheme of the injector in the HAN thruster, a design method of the injector's flow distribution named “dense outside and sparse inside” was proposed, and the design theory of this method was given. Firing tests of a 60 N HAN thruster with a traditional injector and a new-type of injector were carried out. The results show that the 60 N HAN thruster with the traditional uniformly distributed injector fails after working for 680 s, while the thruster with the new special flow distribution injector can work steadily for 1 200 s. The new injector design method provided a reference for the engineering applications of the long-life HAN thruster.
参考文献/References:
[1] MARSHALL W M,DEANS M C.Recommended figures of merit for green monopropellants[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2013.
[2] 萨顿,比布拉兹.火箭发动机基础[M].谢侃,李世鹏,李军伟,等译.北京:北京理工大学出版社,2019.
[3] 布鲁诺,阿塞图拉.先进的推进系统与技术:从现在到2020年[M].侯晓,吕耀辉,孟雅桃,等译.北京:中国宇航出版社,2012.
[4] KANG S,KWON S.Preparation and performance evaluation of platinum Barium hexaaluminate catalyst for green propellant hydroxylamine nitrate thrusters[J].Materials,2021,14(11):2828.
[5] 李文龙,李平,邹宇.烃类推进剂航天动力技术进展与展望未来[J].宇航学报,2015,36(3):243-252.
[6] SACKHEIM R L,MASSE R K.Green propulsion advancement:Challenging the maturity of monopropellant hydrazine[J].Journal of Propulsion and Power,2014,30(2):265-276.
[7] IGARASHI S,YAMAMOTO K,FUKUCHI A B,et al.Development status of the 0.5 N class low-cost thruster for small satellite[C]//2018 Joint Propulsion Conference.Reston,Virginia:AIAA,2018.
[8] MCLEAN C H.Green propellant infusion mission program development and technology maturation[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2014.
[9] 方杰,王尊,严浩,等.双模式离子液体推进剂真空条件催化点火特性[J].火箭推进,2022,48(5):1-8.
FANG J,WANG Z,YAN H,et al.Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J].Journal of Rocket Propulsion,2022,48(5):1-8.
[10] MEINHARDT D,BREWSTER G,CHRISTOFFERSON S,et al.Development and testing of new,HAN-based monopropellants in small rocket thrusters[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1998.
[11] MEINHARDT D,CHRISTOFFERSON S,WUCHERER E,et al.Performance and life testing of small HAN thrusters[C]//35th Joint Propulsion Conference and Exhibit.Reston,Virginia:AIAA,1999.
[12] 陈兴强,张志勇,滕奕刚,等.可用于替代肼的2种绿色单组元液体推进剂HAN、ADN[J].化学推进剂与高分子材料,2011,9(4):63-66.
[13] MASSE R,OVERLY J,ALLEN M,et al.A new state-of-the-art in AF-M315E thruster technologies[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.Reston,Virginia:AIAA,2012.
[14] DEININGER W.Implementation of the green propellant infusion mission(GPIM)on a ball aerospace BCP-100 spacecraft bus[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2013.
[15] CAVENDER D P,MARSHALL W M,MAYNARD A.NASA green propulsion roadmap[C]//2018 Joint Propulsion Conference.Reston,Virginia:AIAA,2018.
[16] GOZA D,NESTERENKO A.Investigation of the thermal catalytic thruster on HAN-based monopropellant[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2017.
[17] NOBUHIKO T,TETSUYA M,KATSUMI F,et al.The “greening” of spacecraft reaction control systems[J].Mitsubishi Heavy Industries Technical Review,2011,48(4):44-50.
[18] TETSUYA M,KATSUMI F,NORIAKI O,et al.Development of green propellant reaction control system(GPRCS)for SERVIS-3 project[R].IAC-13-C4.3.2.
[19] AMROUSSE R,KATSUMI T,AZUMA N,et al.Hydroxylammonium nitrate(HAN)-based green propellant as alternative energy resource for potential hydrazine substitution:From lab scale to pilot plant scale-up[J].Combustion and Flame,2017,176:334-348.
[20] IGARASHI S,MATSUURA Y.Development status of a hydrazine alternative and low-cost thruster using HAN-HN based green propellant[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2017.
[21] NAGATA T,KUSHIKI K,KAJIWARA K,et al.The development of Japanese 20 N thruster valve for a spacecraft propulsion system[C]//57th International Astronautical Congress.Reston,Virigina:AIAA,2006.
[22] LIU J,LIU C,QIU X,et al.Towards satellite propulsion with HAN-based green monopropellants[R].Sp2016-3124923.
[23]GUO M L,YAO T L,LIN Q G.Experimental studies of the150 N HAN-based monopropellant attitude control thruster[R].IAC-15-C4.IP.19.x43769.
[24] 姚天亮,郭曼丽,戴佳,等.新型弹簧床结构的HAN基发动机技术[J].宇航学报,2019,40(4):444-451.
[25] 周汉申.单组元液体火箭发动机设计与研究[M].北京:中国宇航出版社,2009.
[26] 於希乔.HAN基单元发动机流动与传热性研究[M].上海:上海航天技术研究院,2018.
[27] RONALD A S,ROBERT M,SCOTT K,et al.GPIM AF-M315E Propulsion System[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston,Virigina:AIAA,2013.
相似文献/References:
[1]宋 戈,连军伟,丁振晓.用于PDPA校准的标准气溶胶发生器性能研究[J].火箭推进,2018,44(04):54.
SONG Ge,LIAN Junwei,DING Zhenxiao.Performance study on standard aerosol generators for calibration of PDPA[J].Journal of Rocket Propulsion,2018,44(05):54.
[2]刘昌国,陈锐达,刘 犇,等.小推力空间液体火箭发动机夹气启动特性[J].火箭推进,2021,47(03):8.
LIU Changguo,CHEN Ruida,LIU Ben,et al.Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J].Journal of Rocket Propulsion,2021,47(05):8.
[3]熊剑,肖虹,李龙飞,等.基于增材制造的液氧/煤油推力室喷注器分析[J].火箭推进,2023,49(04):60.
XIONG Jian,XIAO Hong,LI Longfei,et al.Analysis on LOx/RP-1 thrust chamber injector for additive manufacturing[J].Journal of Rocket Propulsion,2023,49(05):60.
[4]孔维鹏,谢恒,王晓丽.基于激光选区熔化技术的大尺寸喷注器设计[J].火箭推进,2023,49(04):68.
KONG Weipeng,XIE Heng,WANG Xiaoli.Design of large dimensions injector based on selective laser melting technology[J].Journal of Rocket Propulsion,2023,49(05):68.
备注/Memo
收稿日期:2022-08-23; 修回日期:2022-09-07
基金项目:国家自然科学基金(U21B2088); 上海市优秀学术/技术带头人计划(22XD1422000)
作者简介:白梅杉(1986—),男,硕士,高级工程师,研究领域为液体火箭发动机设计。
通信作者:姚天亮(1985—),男,博士,研究员,研究领域为液体火箭发动机设计。