航天推进技术研究院主办
DAI Qingwen,YANG Jianwen,YANG Bin,et al.Numerical simulation of the influence of single jet obliquely impinging against wall[J].Journal of Rocket Propulsion,2023,49(06):46-54.
单股射流倾斜撞壁影响因素的数值模拟
- Title:
- Numerical simulation of the influence of single jet obliquely impinging against wall
- 文章编号:
- 1672-9374(2023)06-0046-09
- Keywords:
- liquid rocket engine; oblique jet impinging; liquid film; numerical simulation; gas-liquid flow
- 分类号:
- V434+.14
- 文献标志码:
- A
- 摘要:
- 为研究倾斜射流撞击固体表面后液膜的形态变化规律,结合VOF模型和多面体混合网格的数值模拟方法,通过分析不同工况下倾斜射流撞壁后液膜的几何特征参数变化规律,获得了不同工况下液膜铺展的关键特征。研究结果表明:射流撞壁后,壁面压力从液膜的边缘水跃区到中心轴线逐渐减小; 随着射流速度增大,壁面在撞击点附近受到的压力增大,而在液膜汇集区受到的压力减小; 液膜在撞击点附近速度最大,在水跃区汇集点附近速度最小; 随着射流孔径增大,液膜最大速度和最小速度区域的面积增大。
- Abstract:
- In order to investigate the morphological variation rule of liquid film after oblique cylindrical jet impinging on solid surface, a multiphase flow model named Volume of Fluid Phase Model(VOF)was adopted and combined with the polyhedral hybrid grid.The geometric characteristic parameters variations of the liquid film after the jet impacting on the wall obliquely under different working conditions were analyzed, and the key characteristics of the liquid film spreading under different working conditions were obtained.The results show that after the jet dashing against the solid surface obliquely, the wall pressure gradually decreases from the edge of the liquid film to the central axis.As the jet velocity increases, the pressure on the wall near the impinging point increases, while the pressure on the liquid film collection area decreases.At the same time, the liquid film has the maximum velocity, which occurs near the impact point, and the minimum velocity appears near the confluence point of the hydraulic jump zone.As the jet aperture increases, the area of the maximum velocity and minimum velocity region of the spreading liquid film scales up obviously.
参考文献/References:
[1] AHMED M,ASHGRIZ N,TRAN H N.Break-up length and spreading angle of liquid sheets formed by splash plate nozzles[J].Journal of Fluids Engineering,2009,131(1):1.
[2] 韩红伟,王艺杰.液体火箭发动机混合比影响因素研究[J].导弹与航天运载技术,2022(1):36-40.
[3] DRAKE M C,FANSLER T D,SOLOMON A S,et al.Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine[J].Transactions of the ASABE,2003,112:762-783.
[4] LI Y Y,ZHANG C H,YU W,et al.Effects of rapid burning characteristics on the vibration of a common-rail diesel engine fueled with diesel-methanol dual-fuel[J].Fuel,2016,170:176-184.
[5] GUHA A,BARRON R M,BALACHANDAR R.An experimental and numerical study of water jet cleaning process[J].Journal of Materials Processing Technology,2011,211(4):610-618.
[6] BHAGAT R K,WILSON D I.Flow in the thin film created by a coherent turbulent water jet impinging on a vertical wall[J].Chemical Engineering Science,2016,152:606-623.
[7] WILSON D I,LE B L,DAO H D A,et al.Surface flow and drainage films created by horizontal impinging liquid jets[J].Chemical Engineering Science,2012,68(1):449-460.
[8] ARNOLD R,SUSLOV D,HAIDN O J.Circumferential film cooling effectiveness in a LOx/H2 subscale combustion chamber[J].Journal of Propulsion and Power,2009,25(3):760-770.
[9] KIBAR A.Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface:Energy transformation[J].Fluid Dynamics Research,2016,48(1):015501.
[10] KIBAR A,KARABAY H,YIGˇIT K S,et al.Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces[J].Experiments in Fluids,2010,49(5):1135-1145.
[11] GOOD R,NOLLET B.Fluid film distribution investigation for liquid film cooling application[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston,Virginia:AIAA,2017.
[12] 唐亮,胡锦华,刘计武,等.倾斜射流撞壁实验研究及液膜几何参数建模[J].航空学报,2020,41(12):124061.
[13] 林庆国,杨成虎,刘犇.射流角度和壁面曲率对撞壁液膜的影响[J].国防科技大学学报,2013,35(2):17-21.
[14] WANG R X,HUANG Y,FENG X,et al.Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J].Fuel,2018,233:84-93.
[15] HASSON D,PECK R E.Thickness distribution in a sheet formed by impinging jets[J].AIChE Journal,1964,10(5):752-754.
[16] WATSON E J.The radial spread of a liquid jet over a horizontal plane[J].Journal of Fluid Mechanics,1964,20(3):481-499.
[17] INAMURA T,YANAOKA H,TOMODA T.Prediction of mean droplet size of sprays issued from wall impingement injector[J].AIAA Journal,2004,42(3):614-621.
[18] YANG L J,LI P H,FU Q F.Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces[J].International Journal of Multiphase Flow,2020,125:103192.
[19] YANG L J,ZHAO F,FU Q F,et al.Liquid sheet formed by impingement of two viscous jets[J].Journal of Propulsion and Power,2014,30(4):1016-1026.
[20] GRADECK M,KOUACHI A,DANI A,et al.Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface[J].Experimental Thermal and Fluid Science,2006,30(3):193-201.
[21] FARD M,ASHGRIZ N,MOSTAGHIMI J.A numerical model for flow simulation in spray nozzles[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit.Reston,Virginia:AIAA,2004.
[22] 林庆国.空间轨控发动机高效燃烧室仿真与试验研究[D].长沙:国防科学技术大学,2015.
[23] 邱添.液体射流冲击平板数值模拟研究[D].天津:中国民航大学,2020.
[24] 徐文,高新妮,胡保林,等.离心式喷嘴一次破碎与二次雾化的数值模拟[J].火箭推进,2022,48(4):13-20.
XU W,GAO X N,HU B L,et al.Numerical simulation of primary breakup and secondary atomization for centrifugal nozzle[J].Journal of Rocket Propulsion,2022,48(4):13-20.
[25] HIRT C W,NICHOLS B D.Volume of fluid(VOF)method for the dynamics of free boundaries[J].Journal of Computational Physics,1981,39(1):201-225.
[26] 唐亮,王凯,李文龙,等.倾斜射流撞壁铺展的数值仿真[J].航空学报,2023,44(4):141-153.
[27] KATE R P,DAS P K,CHAKRABORTY S.Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface[J].Journal of Fluid Mechanics,2007,573:247-263.
[28] 唐亮,李平,周立新,等.倾斜射流撞壁形成的液膜外形的理论建模[J].推进技术,2021,42(2):327-334.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(06):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(06):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(06):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(06):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(06):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(06):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(06):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(06):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(06):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(06):15.
备注/Memo
收稿日期:2023-02-13; 修回日期:2023-05-26
基金项目:国家自然科学基金(51806144)
作者简介:戴青雯(1998—),女,硕士,研究领域为气液两相流的数值模拟仿真。
通信作者:王 莹(1984—),女,博士,教授,研究领域为流体力学和流动控制。