航天推进技术研究院主办
MA Wenyou,MA Yuan,MA Haibo,et al.Analysis of optimum performance and maximum state control law of PATR engine[J].Journal of Rocket Propulsion,2023,49(06):90-99.
PATR发动机控制特性和最大状态控制规律分析
- Title:
- Analysis of optimum performance and maximum state control law of PATR engine
- 文章编号:
- 1672-9374(2023)06-0090-10
- Keywords:
- pre-cooling combined cycle engine; PATR; control law; optimum performance state; maximum thrust state; maximum specific impulse state
- 分类号:
- V236
- 文献标志码:
- A
- 摘要:
- 为了研究预冷空气涡轮火箭发动机(PATR)的最大状态(最大推力和最大比冲状态)控制规律,建立了PATR的稳态变工况模型,研究了控制量对发动机性能参数的影响特性,给出了在总氢流量一定的前提下,发动机的最优性能状态(推力和比冲同时达到最大)控制规律,在此基础上进一步分别得到了发动机的最大推力状态和最大比冲状态的控制规律,并分别给出了发动机处于最大推力状态和最大比冲状态下的飞行包线。结果表明:当总氢流量一定时,PATR发动机的推力和比冲将随主燃室温度、氦涡轮入口温度、尾喷管喉部面积的增加而增大; 给定总氢流量下的PATR发动机的最优性能状态控制规律为:核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,此时发动机的推力和比冲同时达到最大,发动机处于最优性能状态; 当主燃室温度、氦涡轮入口温度、尾喷管喉部面积一定时,推力随总氢流量的增加而增大,比冲与之相反; PATR发动机的最大推力状态控制规律为核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,并要尽可能地增加总氢流量; PATR发动机的最大比冲状态控制规律为核心机余气系数之和等于1、氦涡轮入口温度、尾喷管喉部面积分别取得最大值,并要尽可能地减小总氢流量。
- Abstract:
- In order to study the control law of the maximum state(the maximum thrust state and the maximum specific impulse state)of the pre-cooling air turbine rocket engine(PATR), a steady state variable condition model of PATR was established, and the influence of the control parameter on the performance parameters of the engine was studied.The optimal performance state(maximum thrust state and specific impulse state at the same time)of the engine was given on the premise that the total hydrogen flow rate is proposed.On this basis, the control laws of the maximum thrust state and the maximum specific impulse state of the engine were proposed, and the flight envelope of the engine in the maximum thrust state and the maximum specific impulse state were given, respectively.The results show that the thrust of PATR engine will increase with the increase of main combustion chamber temperature, helium turbine inlet temperature and nozzle throat area when the total hydrogen flow rate is constant.When the temperature of the main combustion chamber, the inlet temperature of the helium turbine and the throat area of the nozzle are constant, the thrust increases with the increase of the total hydrogen flow.The optimal performance state control law of PATR engine with given total hydrogen flow rate is as follows: the sum of the residual gas coefficient of the precombustion chamber and the main combustion chamber is equal to 1, the inlet temperature of the helium turbine and the throat area of the tail nozzle get the maximum value, and the thrust and specific impulse of the engine reach the maximum at the same time, and the engine is in the optimal performance state.The maximum thrust state control rules of the PATR engine are as follows.The sum of the residual gas coefficient of the precombustion chamber and the main combustion chamber is equal to 1, the maximum value of the inlet temperature of the helium turbine and the throat area of the tail nozzle are obtained respectively.The total hydrogen flow rate should be increased as far as possible, when the total hydrogen flow rate is increased, the engine will touch the air compressor conversion speed or the maximum pressure boundary of the helium circuit.Safety boundary contact order is determined by engine characteristics and flow conditions.The maximum specific impulse state control law of PATR engine is as follows. The sum of the residual gas coefficient of the precombustion chamber and the main combustion chamber is equal to 1, the maximum of the inlet temperature of the helium turbine and the throat area of the tail nozzle are obtained, and the total hydrogen flow rate should be reduced as far as possible, when the total hydrogen flow rate is reduced, the engine will touch the surge boundary of the air compressor or the maximum temperature boundary of the precooler material.Safety boundary contact sequence is also determined by engine characteristics and incoming flow conditions.
参考文献/References:
[1] 邹正平,王一帆,额日其太,等.高超声速强预冷航空发动机技术研究进展[J].航空发动机,2021,47(4):8-21.
[2] 马晓秋.预冷吸气组合发动机研究进展与关键技术分析[J].科技导报,2020,38(12):85-95.
[3] 陈操斌,郑日恒,马同玲,等.带有闭式布雷顿循环的预冷发动机特性研究[J].推进技术,2021,42(8):1749-1760.
[4] 姚尧,王占学,张晓博,等.液氢预冷吸气式发动机建模与循环特性分析[J].推进技术,2022,43(4):26-36.
[5] 唐靖博,杨庆春,徐旭.预冷组合循环发动机吸气式模态建模与性能分析[J].推进技术,2022,43(9):20-33.
[6] 董芃呈,唐海龙,陈敏.高超声速预冷发动机总体性能研究[J].航空动力,2020(3):23-26.
[7] VARVILL R,BOND A.The SKYLON spaceplane[C]//46th IAF Congress.Oslo:IAF,1995.
[8] MURRAY J J,GUHA A,BOND A.Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J].Acta Astronautica,1997,41(11):723-729.
[9] WILCOX E C,TROUT A M.Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection[R].NACA-TR-1006.
[10] WILLENS D.Liquid Injection on turbojet engines for high speed aircraft[Z].1955.
[11] SOHN R L.Theoretical and experimental studies of precompressor evaporative cooling for application to the turbojet engine in high altitude supersonic flight[R].WADC-TR-56-477.
[12] TANATSUGU N,SATO T,BALEPIN V,et al.Development study on ATREX engine[C]//Space Plane and Hypersonic Systems and Technology Conference.Reston,Virigina:AIAA,1996.
[13] SATO T,KOBAYASHI H,TANATSUGU N,et al.Development study of the precooler of the ATREX engine[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies.Reston,Virigina:AIAA,2003.
[14] 张蒙正,刘典多,马海波,等.PATR发动机关键技术与性能提升途径初探[J].推进技术,2018,39(9):1921-1927.
[15] 朱岩,马元,张蒙正.预冷空气涡轮火箭发动机氦循环系统的参数特性[J].航空动力学报,2018,33(8):2016-2024.
[16] 罗佳茂,杨顺华,母忠强,等.预冷型组合循环发动机技术[J].空气动力学学报,2022,40(1):190-207.
[17] 吴弈臻,马元,黄乐萍,等.预冷组合发动机中波瓣混流器对氢气/空气掺混性能影响[J].火箭推进,2021,47(6):76-85.
WU Y Z,MA Y,HUANG L P,et al.Influence of lobe mixer in pre-cooling air turbo rocket engine on hydrogen/air mixing performance[J].Journal of Rocket Propulsion,2021,47(6):76-85.
[18] 马文友,张文胜,马元,等.基于控制规律的PATR发动机典型工况点速度与高度特性分析[J].火箭推进,2022,48(6):35-43.
MA W Y,ZHANG W S,MA Y,et al.Analysis of velocity and altitude characteristics at typical operating conditions based on control law of PATR engine[J].Journal of Rocket Propulsion,2022,48(6):35-43.
[19] 玉选斐.预冷吸气式组合推进系统热力循环及控制规律研究[D].哈尔滨:哈尔滨工业大学,2020.
YU X F.Research on thermodynamic cycle and control law of precooled airbreathing propulsion system[D].Harbin:Harbin Institute of Technology,2020.
[20] 高远,陈玉春,史新兴.深冷组合发动机吸气模态最大状态控制规律研究[J].推进技术,2020,41(12):2659-2669.
[21] 胡骏.航空叶片机原理[M].2版.北京:国防工业出版社,2014.
备注/Memo
收稿日期:2023-03-22; 修回日期:2023-05-23
基金项目:国家自然科学基金(U1967203)
作者简介:马文友(1998—),男,硕士,研究领域为组合发动机。
通信作者:马元(1980—),男,博士,研究员,研究领域为组合发动机。