航天推进技术研究院主办
MA Haibo,MA Yuan,NAN Xiangyi,et al.Development history and parameter characteristic analysis of PATR engine[J].Journal of Rocket Propulsion,2023,49(06):100-109.
PATR发动机发展历程简介及参数特性分析
- Title:
- Development history and parameter characteristic analysis of PATR engine
- 文章编号:
- 1672-9374(2023)06-0100-10
- Keywords:
- PATR engine; simulation calculation; parameter influence; operating characteristics; heat capacity ratio
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 介绍了PATR发动机的发展历程,总结了其创新优化思路。针对PATR热力循环方案进行了设计点输入参数影响分析,开展了弹道特性、高度特性和转速特性仿真计算,结果表明:热容比对于发动机性能影响最为显著,热容比kHX2每增加1%,比冲降低0.59%,单位推力增加0.39%; 空气压气机和氦涡轮等熵效率、预冷器空气侧总压恢复系数对发动机性能也有明显影响,空气压气机等熵效率每增加1%比冲增加0.12%,单位推力增加0.12%,其余参数对发动机性能影响相对较小; 随着飞行马赫数增加,PATR发动机比冲呈下降趋势,单位推力在外涵开始工作时会产生跳跃式下降,之后基本保持不变; 飞行高度增加会使发动机比冲增高,单位推力降低; 转速降低会使发动机比冲和单位推力降低,并且内涵和外涵流路共同工作时的降幅明显小于内涵流路单独工作时的降幅。
- Abstract:
- The development history of PATR engine is briefly introduced and its innovation and optimization ideas are summarized.For the thermal cycle scheme of PATR engine, the influence of input parameters at the design point is analyzed, and the simulation calculation of trajectory characteristics, altitude characteristics and rotation speed characteristics are carried out.The results show that the heat capacity ratio has the most significant effect on the engine performance.With the heat capacity ratio increasing by 1%, the specific impulse decreases by 0.59% and the unit thrust increases by 0.39%.The isentropic efficiency of the air compressor and helium turbine, and the total pressure recovery coefficient at the air side of the precooler also have significant effects on the engine performance.The specific impulse increases by 0.12% and the unit thrust increases by 0.12% when the isentropic efficiency of the air compressor increases by 1%. In addition, the other parameters have relatively small effects on the engine performance.With the increase of flight Mach number, the specific impulse of PATR engine shows a downward trend, and the specific thrust decreases suddenly when the external duct starts working, and then remains basically unchanged.The increase of flight altitude will result in an increase for the specific impulse of the engine increases and a decrease in the specific thrust.When the engine speed decreases, both the specific impulse and specific thrust of the engine decrease, and the reduction when the internal duct and external duct work together is obviously smaller than that when the internal duct works alone.
参考文献/References:
[1] LONGSTAFF R,BOND A.The SKYLON project[C]//17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.Reston,Virginia:AIAA,2011.
[2] HEMPSELL M.Progress on Skylon and Sabre[EB/OL].https://www.researchgate.net/publication/289579461_Progress_on_SKYLON_and_SABRE,2013.
[3] 廖孟豪.英国技术 美国“佩刀”:美公布基于“佩刀”发动机两级入轨飞行器概念[J].环球飞行,2016(9):64-65.
[4] 廖孟豪.DAPRA授予反作用发动机公司“佩刀”空天发动机预冷器高温考核试验合同[EB/OL].https://www.sohu.com/a/194860703_613206,2017.
[5] 刘晓明.BAE系统公司发布高超声速快速响应飞行器作战概念[EB/OL].https://www.sohu.Com/a /110323100_465915,2016.
[6] Reaction Engines.Reaction engines test programme successfully proves precooler capability at supersonic heat conditions[EB/OL].https://reactionengines.co.uk/reaction-engines-test-programme-successfully-proves-precooler-capability-at-supersonic-heat-conditions,2019.
[7] Reaction Engines.Reaction engines test programme fully validates precooler at hypersonic heat conditions[EB/OL].https://reactionengines.co.uk/reaction-engines-test-programme-fully-validates-precooler-at-hypersonic-heat-conditions,2019.
[8] Reaction Engines.Reaction engines completes further validation of SABRE technology[EB/OL].https://reactionengines.co.uk/reaction-engines-completes-further-validation-of-sabre-technology,2021.
[9] Reaction Engines.SABRE development update:Advanced hydrogen preburner testing complete[EB/OL].https://reactionengines.co.uk/sabre-development-update-advanced-hydrogen-preburner-testing-complete,2021.
[10] 张蒙正,南向谊,刘典多.预冷空气涡轮火箭组合动力系统原理与实现途径[J].火箭推进,2016,42(1):6-12.
ZHANG M Z,NAN X Y,LIU D D.Principles and realizing ways of combined power system for pre-cooling air turbo rocket[J].Journal of Rocket Propulsion,2016,42(1):6-12.
[11] DISSEL A,BARTH J,WEBBER H.SABRE technology development[R].IAC-16C4.9.2.
[12] 张蒙正,刘典多,马海波,等.PATR发动机关键技术与性能提升途径初探[J].推进技术,2018,39(9):1921-1927.
[13] 马文友,张文胜,马元,等.基于控制规律的PATR发动机典型工况点速度与高度特性分析[J].火箭推进,2022,48(6):35-43.
MA W Y,ZHANG W S,MA Y,et al.Analysis of velocity and altitude characteristics at typical operating conditions based on control law of PATR engine[J].Journal of Rocket Propulsion,2022,48(6):35-43.
[14] 胡勇.空气涡轮火箭组合发动机总体方案研究与优化设计[D]. 长沙:国防科学技术大学,2013.
[15] 王珏,孙慧娟,刘恒,等.膨胀循环发动机低温起动特性研究[J].导弹与航天运载技术,2021(6):7-11.
相似文献/References:
[1]高曼,王志永,李小明.电磁阀泄漏故障分析及改进[J].火箭推进,2018,44(05):43.
GAO Man,WANG Zhiyong,LI Xiaoming.Analysis for leakage fault of solenoid valve and its improvement[J].Journal of Rocket Propulsion,2018,44(06):43.
[2]魏芳胜,庄宿国,王 磊,等.火箭发动机端面密封静环热压工艺及故障分析[J].火箭推进,2019,45(05):83.
WEI Fangsheng,ZHUANG Suguo,WANG Lei,et al.Hot pressing technology and fault analysis of face seal ring for rocket engine[J].Journal of Rocket Propulsion,2019,45(06):83.
备注/Memo
收稿日期:2022-10-30; 修回日期:2023-03-12
作者简介:马海波(1994—),男,硕士,研究领域为组合发动机系统。
通信作者:马 元(1980—),男,博士,研究员,研究领域为组合发动机。