航天推进技术研究院主办
WANG Kai,WANG Dongfang,LIU Youqiang,et al.Application and prospect of wrought superalloy in liquid rocket engine[J].Journal of Rocket Propulsion,2024,50(01):57-66.[doi:10.3969/j.issn.1672-9374.2024.01.005]
变形高温合金在液体火箭发动机中的应用进展及展望
- Title:
- Application and prospect of wrought superalloy in liquid rocket engine
- 文章编号:
- 1672-9374(2024)01-0057-10
- Keywords:
- wrought superalloy; liquid rocket engine; thrust chamber; turbine; thermal processing technology
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 变形高温合金以其良好的耐高温、抗氧化、抗热腐蚀性能和较好的冷、热加工性,在液体火箭发动机推力室身部、涡轮壳体、涡轮转子等热端部件中得到了广泛的应用。通过查阅文献,综述了国内外变形高温合金及热加工技术发展现状、液体火箭发动机热端构件对高温合金性能需求、变形高温合金在国内外著名液体火箭发动机中的应用情况。结合液体火箭发动机可回收、高性能、轻量化、低成本的发展趋势,总结了变形高温合金在液体火箭发动机领域的主要发展趋势,包括研发针对液体火箭发动机服役工况的高温合金材料、改进热加工工艺,从而提升高温合金性能、降低高温合金构件制造成本; 研发和推广耐高温轻质金属间化合物、降低热端构件质量。
- Abstract:
- Wrought superalloy has been widely used in hot section parts such as liquid rocket engine thrust chambers, turbine shells and turbine rotors because of its excellent high-temperature resistance, oxidation resistance, thermal corrosion resistance as well as good cold and hot workability. The development status of wrought superalloy and thermal processing technology, the performance requirements of wrought superalloy for hot section components of liquid rocket engines, and the application of wrought superalloy in well-known liquid rocket engines are reviewed based on domestic and foreign literature. Based on the development trend of reusability, high performance, light weight and low cost of liquid rocket engines, the main development trends of wrought superalloy in liquid rocket engines have been summarized. To improve the performance of superalloy and reduce the cost of manufacturing by investigating superalloy materials aiming at service conditions of liquid rocket engines and improving the hot working processes. On the other hand, more attention can be paid to developing and promoting high-temperature resistant lightweight intermetallic compounds to reduce the weight of hot section components.
参考文献/References:
[1] 仲增墉,师昌绪.中国高温合金四十年发展历程[C]//中国高温合金四十年论文集.北京:冶金工业出版社,1996.
[2]郭建亭.高温合金材料学(中册):制备工艺[M].北京:科学出版社,2008.
[3]冶军.美国镍基高温合金[M].北京:科学出版社,1978.
[4]LORIA E A.Gamma titanium aluminides as prospective structural materials[J].Intermetallics,2000,8(9/10/11): 1339-1345.
[5]黄福祥.涡轮盘用变形高温合金在俄国的发展[J].航空材料学报,1993,13(3): 49-56.
HUANG F X.Development of turbine disk superalloys in Russia[J].Journal of Aeronautical Materials,1993,13(3):49-56.
[6]杜金辉,赵光普,邓群,等.中国变形高温合金研制进展[J].航空材料学报,2016,36(3):27-39.
DU J H, ZHAO G P, DENG Q, et al.Development of wrought superalloy in China[J].Journal of Aeronautical Materials, 2016, 36(3): 27-39.
[7]LI F, FU R, FENG D, et al.Microstructure evolution during hot deformation of as cast ESR-CDSed superalloy Rene88DT[J].Materials Research Innovations, 2014, 18(S4): 421-428.
[8]FREUND L P, STARK A, PYCZAK F, et al.The grain boundary pinning effect of the μ phase in an advanced polycrystalline γ/γ' Co-base superalloy[J].Journal of Alloys and Compounds, 2018, 753: 333-342.
[9]LI F L, FU R, FENG D, et al.Hot workability characteristics of Rene88DT superalloy with directionally solidified microstructure[J].Rare Metals, 2015, 34(1): 51-63.
[10]APPEL F, OEHRING M, WAGNER R.Novel design concepts for gamma-base titanium aluminide alloys[J].Intermetallics, 2000, 8(9/10/11): 1283-1312.
[11]ALLEN M M.Application of powder metallurgy to superalloy forgings [J].Mechanical Engineering Technology, 1970, 10(1): 20.
[12]PATEL S, DE BARBADILLO J, CORYELL S.Superalloy 718: evolution of the alloy from high to low temperature application[C]//9th International Symposium on Superalloy 718 and Derivatives.[S.l.]: [s.n.], 2018.
[13]KIM Y W.Role of niobium in the process of gamma alloy development,niobium for high temperature applications[C]// Structure Intermetallics 2004.[S.l.]: TMS,2004.
[14]GILCHRIST A, POLLOCK T M.Cast gamma titanium aluminides for low pressure turbine blade:A design case study for intermetallics[C]//Structure Intermetallics 2001.[S.l.]: TMS, 2001.
[15]RAZA S S, AHMAD T, KAMRAN M, et al.Effect of hot rolling on microstructures and mechanical properties of Ni base superalloy[J].Vacuum, 2020, 174: 1-10.
[16]GERLING R, SCHIMANSKY F P, STARK A, et al.Microstructure and mechanical properties of Ti45Al5Nb+(0-0.5C)sheets[J].Intermetallics,2008,16(5):689-697.
[17]MOLL J H, SEHWERTZ H H, CHANDHOK V K.PM dual property wheels for small engines[Z].1983.
[18]RADIS R, SCHAFFER M, ALBU M, et al.Evolution of size and morphology of γ'precipitates in UDIMET 720 Li during continuous cooling[C]//Superalloys 2008(Eleventh International Symposium)[S.L.].TMS, 2008.
[19]FURRER D U, FECHT H J.γ' formation in superalloy U720LI[J].Scripta Materialia, 1999, 40(11): 1215-1220.
[20]BRYANT D J, MCINTOSH G.The manufacture and evaluation of a large turbine disc in cast and wrought alloy 720Li[C]//Superalloys 1996(8th International Symposium).[S.l.]: TMS, 1996.
[21]JACKSON M P,REED R C.Heat treatment of UDIMET 720Li: the effect of microstructure on properties[J].Materials Science and Engineering: A, 1999, 259(1): 85-97.
[22]ZHANG H J, LI C, LIU Y C, et al.Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J].Materials Science and Engineering:A, 2016, 677: 515-521.
[23]RIST M A, JAMES J A, TIN S, et al.Residual stresses in a quenched superalloy turbine disc:measurements and modeling[J].Metallurgical and Materials Transactions A, 2006, 37(2): 459-467.
[24]WEN D X, LIN Y C, LI X H, et al.Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase[J].Journal of Alloys and Compounds, 2018, 764: 1008-1020.
[25]ZHOU T J, FENG W, ZHAO H B, et al.Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy[J].Progress in Natural Science: Materials International, 2018, 28(1): 45-53.
[26]VALITOV V.Formation of nanocrystalline structure upon severe thermomechanical processing and its effect on the superplastic properties of nickel base alloys[C]//8th International Symposium on Superalloy 718 and Derivatives(2014).[S.l.]: John Wiley & Sons, Inc, 2014.
[27]PETROVA L G, CHUDINA O V.Evaluation of dispersion hardening by various coherent nitrides in nitriding alloys based on iron, nickel, and cobalt[J].Metal Science and Heat Treatment, 1999, 41(6): 238-241.
[28]ZHOU T J, DING H S, MA X P, et al.Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 1 000-1 100 ℃ thermal exposures[J].Materials Science and Engineering: A, 2018, 725: 299-308.
[29]GAYDA J, LEMSKY J.Assessment of NASA dual microstructure heat treatment method for multiple forging batch heat treatment[Z].2004.
[30]SMYTHE J.Superalloy powders:An amazing history[J].Advanced Materials & Processes, 2008, 11: 52.
[31]师昌绪,仲增墉.我国高温合金的发展与创新[J].金属学报,2010,46(11):1281-1288.
SHI C X, ZHONG Z Y.Development and innovation of superalloy in China[J].Acta Metallurgica Sinica, 2010, 46(11): 1281-1288.
[32]中国金属学会高温材料分会.中国高温合金手册[M].北京:中国标准出版社,2012.
[33]田世藩,张国庆,李周,等.先进航空发动机涡轮盘合金及涡轮盘制造[J].航空材料学报,2003,23(S1):233-238.
TIAN S F,ZHANG G Q, LI Z, et al.Advanced aero-engine turbine disk alloy and turbine disk manufacturing[J].Journal of Aeronautical Materials, 2003, 23(S1): 233-238.
[34]MEI Y P, LIU Y C, LIU C X, et al.Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718[J].Materials & Design, 2016, 89: 964-977.
[35]张勇,李鑫旭,韦康,等.三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为[J].金属学报,2020,56(8):1123-1132.
ZHANG Y, LI X X, WEI K, et al.Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting[J].Acta Metallurgica Sinica, 2020, 56(8): 1123-1132.
[36]MARTIN S, ALEKSANDAR S, VOLKER W.Development of an automated property simulation tool for direct aged alloy 718 engine disk forgings[C]//9th International Symposium on Superalloy 718 and Derivatives.[S.l.]:[s.n.], 2010.
[37]SUTTON G.Turbopumps, a historical perspective[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virginia: AIAA, 2006.
[38]TRACEY V A, CUTLER C P.High-temperature alloys from powders[J].Powder Metallurgy, 1981, 24(1): 32- 40.
[39]MEYERSON R, TAYLOR A.A status report on the development of the Kistler Aerospace K-1 Reusable Launch Vehicle[C]//16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar.Reston, Virginia: AIAA, 2001.
[40]LIU Y H,NING Y Q, YANG X M, et al.Effect of temperature and strain rate on the workability of FGH4096 superalloy in hot deformation[J].Materials & Design, 2016, 95: 669-676.
[41]FUKUSHIMA Y, NAKATSUZI H.Development status of LE-7A and LE-5B engines for H-IIA family[R].IAF97-S.1.02.
[42]YAMANISHI N, KIMURA T, TAKAHASHI M, et al.Transient analysis of the LE-7A rocket engine using the rocket engine dynamic simulator(REDS)[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.Reston, Virginia: AIAA, 2004.
[43]丁新玲,徐坤和,张芹梅,等.国外百吨级氢氧发动机喷管延伸段制造技术[C]//液体及特种推进技术专业组2014年学术研讨会论文集.[S.l.]:[s.n.],2014.
[44]王凯,张鹏,杨卫鹏,等.液体火箭发动机辐射冷却身部材料研究进展[J].火箭推进,2023,49(1):12-20.
WANG K, ZHANG P, YANG W P, et al.Recent development of radiation cooling body materials for liquid rocket engines[J].Journal of Rocket Propulsion, 2023, 49(1): 12-20.
[45]王宏亮,黄进峰,连勇,等.高温合金GH4169与GH4202在富氧气氛中的燃烧行为[J].工程科学学报,2016,38(9):1288-1295.
WANG H L, HUANG J F, LIAN Y, et al.Combustion behavior of GH4169 and GH4202 superalloys in oxygen-enriched atmosphere[J].Chinese Journal of Engineering, 2016, 38(9): 1288-1295.
[46]耿雪松,索永刚,宋国新.高温合金大尺寸空间曲面构件电解加工技术[J].电加工与模具,2019(5):33-37.
GENG X S, SUO Y G, SONG G X.Electrochemical machining of superalloy components with large-sized and spatial curved surface[J].Electromachining & Mould, 2019(5): 33-37.
[47]王凯,苗金武,陈科,等.工艺参数对GH4586高温合金微观组织的影响[J].塑性工程学报,2020,27(7):72-78.
WANG K, MIAO J W, CHEN K, et al.Effect of processing parameters on microstructure of GH4586 superalloy[J].Journal of Plasticity Engineering, 2020, 27(7): 72-78.
[48]王凯,张静,刘进涛,等.GH4586合金涡轮盘预制坯优化与组织均匀性控制[J].火箭推进,2021,47(1):83-89.
WANG K, ZHANG J, LIU J T, et al.Preformed blank optimization and microstructure uniformity control of GH4586 alloy turbine disk[J].Journal of Rocket Propulsion, 2021, 47(1): 83-89.
[49]赵光普.国内外航空涡轮盘材料性能数据及GH586合金简介[R].北京:钢铁研究总院五室,1997.
[50]THORAT S, LONKAR V, PAILWAN A, et al.Effect of metallurgical parameters induced by manufacturing processes on photochemical machining of Co-Cr L605 alloy[J].Procedia CIRP, 2020, 95: 149-154.
[51]李斌,张小平,高玉闪.我国可重复使用液体火箭发动机发展的思考[J].火箭推进,2017,43(1):1-7.
LI B, ZHANG X P, GAO Y S.Consideration on development of reusable liquid rocket engine in China[J].Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[52]金平,吕俊杰,戚亚群,等.可重复使用液体火箭发动机寿命问题探讨[J].宇航总体技术,2023,7(4):51-59.
JIN P, LYU J J, QI Y Q, et al.Discussion on the life of reusable liquid rocket engine[J].Astronautical Systems Engineering Technology, 2023, 7(4): 51-59.
[53]DAVIS J, CAMPBELL R, DAVIS J, et al.Advantages of a full-flow staged combustion cycle engine system[C]//33rd Joint Propulsion Conference and Exhibit.Reston, Virginia: AIAA, 1997.
[54]XU W, CHEN X, ZHONG B, et al.High cycle fatigue characterization of a nickel-based superalloy based on a novel temperature-dependent regression method[J].International Journal of Fatigue, 2021, 142: 105960.
[55]沈将华,周宇亭,王秀霞.服役工况下镍基单晶高温合金的损伤机制研究进展[J].国防科技大学学报,2023,45(4):55-65.
SHEN J H, ZHOU Y T, WANG X X.Research progress in damage mechanism of nickel-based single crystal superalloys under service conditions[J].Journal of National University of Defense Technology, 2023, 45(4): 55-65.
相似文献/References:
[1]李元启,刘红军,徐浩海,等.液体火箭发动机动态特性仿真技术研究进展[J].火箭推进,2017,43(05):1.
LI Yuanqi,LIU Hongjun,XU Haohai,et al.Research progress on numerical simulation technology of
liquid rocket engine dynamic characteristics[J].Journal of Rocket Propulsion,2017,43(01):1.
[2]刘锋,申智帅,王波,等.气动增压空间推进系统及相关技术试验研究[J].火箭推进,2017,43(06):38.
LIU Feng,SHEN Zhishuai,et al.Experimental study on pneumatic pressurization space propulsion system and its correlation technology[J].Journal of Rocket Propulsion,2017,43(01):38.
[3]王 丹,陈宏玉,周晨初.电动泵压式发动机系统方案与性能评估[J].火箭推进,2018,44(02):28.
WANG Dan,CHEN Hongyu,ZHOU Chenchu.System scheme and performance evaluation of an engine fed by electric pump[J].Journal of Rocket Propulsion,2018,44(01):28.
[4]左 蔚,宋梦华,杨欢庆,等.增材制造技术在液体火箭发动机应用述评[J].火箭推进,2018,44(02):55.
ZUO Wei,SONG Menghua,YANG Huanqing,et al.Application of additive manufacturing technology in liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(01):55.
[5]杜大华,穆朋刚,田川,等.液体火箭发动机管路断裂失效分析及动力优化[J].火箭推进,2018,44(03):16.
DU Dahua,MU Penggang,et al.Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(01):16.
[6]张蒙正,张 玫.航天运载器重复使用液体动力若干问题探讨[J].火箭推进,2019,45(04):9.
ZHANG Mengzheng,ZHANG Mei.Discussion on some problems of reusable liquid-propellant engine[J].Journal of Rocket Propulsion,2019,45(01):9.
[7]蒲光荣,单 磊,赵晓慧,等.泵压式多次起动发动机起动过程仿真研究[J].火箭推进,2019,45(05):17.
PU Guangrong,SHAN Lei,ZHAO Xiaohui,et al.Simulation study on start-up processes of a multi-startup turbopump-fed rocket engine[J].Journal of Rocket Propulsion,2019,45(01):17.
[8]石 璞,朱国强,李进贤,等.液体火箭发动机针栓喷注器雾化燃烧技术研究进展[J].火箭推进,2020,46(04):1.
SHI Pu,ZHU Guoqiang,LI Jinxian,et al.Advances in atomized combustion technology research of pintle injector for liquid rocket engines[J].Journal of Rocket Propulsion,2020,46(01):1.
[9]杜大华,王 珺,王红建,等.液体火箭发动机涡轮盘低周疲劳寿命预测[J].火箭推进,2020,46(06):13.
DU Dahua,WANG Jun,WANG Hongjian,et al.Low cycle fatigue life prediction of a liquid rocket
engine turbine disk[J].Journal of Rocket Propulsion,2020,46(01):13.
[10]张忠利,周立新,胡锦华.多层隔热材料热防护方法[J].火箭推进,2023,49(02):51.
ZHANG Zhongli,ZHOU Lixin,HU Jinhua.Thermal protection methods of multilayer heat insulation material[J].Journal of Rocket Propulsion,2023,49(01):51.
备注/Memo
收稿日期:2023- 07- 17 修回日期:2023- 08- 23
基金项目:装备预先航天科技联合基金(6141B06310101)
作者简介:王凯(1991—),男,硕士,高级工程师,研究领域为液体火箭发动机制造。