航天推进技术研究院主办
LIU Shijie,WANG Dong,TIAN Yuan,et al.Analysis on reusability design technology of liquid rocket engine[J].Journal of Rocket Propulsion,2024,50(01):67-77.[doi:10.3969/j.issn.1672-9374.2024.01.006]
液体火箭发动机可重复使用性设计技术分析
- Title:
- Analysis on reusability design technology of liquid rocket engine
- 文章编号:
- 1672-9374(2024)01-0067-11
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 为适应可重复使用液体火箭发动机设计研制的需要,以航天飞机、猎鹰9号火箭和X-37B的动力系统为对象,开展了可重复使用液体火箭发动机关键设计技术研究。文献调研与工程研制经验相结合,从运维体系建设、核心件功能设计、成本化设计与控制等方面,分析了发动机可重复使用性设计方法,提出了关键技术难题。研究结果表明:发动机的深度变推力技术、多次启动技术、喷管大角度调节技术,以及故障诊断与监测技术等,是火箭顺利回收的基本保障技术; 液体火箭发动机有着显著的高、低温,强振动工况,极端环境材料性能数据建库技术、寿命设计与控制技术、全寿命周期运营体系设计技术等是迫切需要解决的关键技术难题; 以发动机的性能、可靠性、维修性、安全性和保障性发展的发动机成本限额设计技术将会成为解决发动机可重复使用性的高新技术。
- Abstract:
- Abstract:To meet the needs of designing and developing reusable liquid rocket engine, the key design technologies of reusable liquid rocket engine are studied based on the engine systems of the space shuttle, Falcon 9 and X-37B. Combining literature research with engineering development experience, the design methods for engine reusability are analyzed from the aspects of operation and maintenance system construction, core component function design, cost design and control, and the key technical challenges are proposed. Research results show that: the deep variable thrust technology, the multiple start technology, the large angle adjustment technology of nozzle, and the diagnosis and monitoring technology of fault are the basic technical guarantee for the successful recovery of rockets; liquid rocket engine has significant high, low temperature and strong vibration conditions, the key technical problems including the technology of setting up the material performance database in extreme environment, the technology of life design and control, and the design technology of the full life cycle operation system are necessary to be solved urgently; the cost limit design technology based on the performance, reliability, maintainability, safety and supportability of the engine will become a high-tech to the reusability of the engine.
参考文献/References:
[1] 张晓东, 刘昶, 朱亮聪, 等. 垂直起降重复使用液氧甲烷运载火箭发展路线探讨[J]. 空天技术, 2022(3): 71-79.
ZHANG X D, LIU C, ZHU L C, et al. Discussion on the development path of vertical take-off and vertical landing reusable liquid oxygen methane rocket[J]. Aerospace Technology, 2022(3): 71-79.
[2]MEISL C J. Life-cycle-cost considerations for launch vehicle liquid propellant rocket engine[J]. Journal of Propulsion and Power, 1988, 4(2): 118-126.
[3]MACGREGOR C A. Reusable rocket engine maintenance study[R]. NASA-CR-165569,1982.
[4]RACHUK V, GONCHAROV N,MARTINYENKO Y Evolution of the RD-0120 for future launch systems[C]//32nd AIAA,ASME,SAE, and ASEE, Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA,1996.
[5]RUDIS M, ORLOV V, RACHUCK V, et al. A universal methodology for predicting liquid rocket engine durability based on Russian RD-0120 engine operating experience[C]//31st Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1995.
[6]RACHUK V, GONCHAROV N, MARTYNENKO Y, et al. Design, development, and history of the oxygen/hydrogen engine RD-0120[C]//31st Joint Propulsion Conference and Exhibit.Reston, Virigina: AIAA, 1995.
[7]LIMERICK C. Kistler K-1 vehicle propulsion development status[C]// 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1999.
[8]ANISIMOV V, LACEFIELD T, ANDREWS J, et al. Evolution of the NK-33 and NK-43 reusable LOX/kerosene engines[C]//33rd Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1997.
[9]杨青格, 林倩, 吴小宁. 俄罗斯可重复使用火箭最新发展[J]. 中国航天, 2022(6): 53-57.
YANG Q G, LIN Q, WU X N. The latest development of Russian reusable rockets[J]. Aerospace China, 2022(6): 53-57.
[10]WANG Z G, WANG Y, ZHANG J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology, 2014, 39: 31-39.
[11]陈操斌, 牛军. 可重复使用宽域高速飞行器低速段动力方案分析与选型[J]. 空气动力学学报, 2022, 40(1): 149-164.
CHEN C B, NIU J. Analysis and selection of engine schemes for reusable wide-range high-speed aircraft in the low-speed phase[J]. Acta Aerodynamica Sinica, 2022, 40(1): 149-164.
[12]SIMONTACCHI P, BMASI R, EDELINE E, et al. Prometheus: precursor of new low-cost rocket engine family[C]// 8th European Conference for Aeronautics and Space Sciences. Madrid, Spain:[s.n.],2019.
[13]席欢. 欧空局继续推进低成本可重复使用的火箭发动机[J]. 全球定位系统, 2020, 45(3): 82.
XI H. ESA continues to promote low-cost reusable rocket engines[J]. GNSS World of China, 2020, 45(3): 82.
[14]张楠, 孙慧娟. 低温液体火箭发动机重复使用技术分析[J]. 火箭推进, 2020, 46(6): 4-15.
ZHANG N, SUN H J. Analysis on the reusable cryogenic liquid rocket engine technology[J]. Journal of Rocket Propulsion, 2020, 46(6): 4-15.
[15]鲍丙亮, 王军杰, 钟明磊. 梅林和猛禽液体火箭发动机技术研究与启示[C]// 空天动力联合会议论文集.南京:[s.n.],2020.
[16]张雪松. 猎鹰火箭的基础: 不断升级的梅林发动机[J]. 卫星与网络, 2017(6): 40- 41.
ZHANG X S. The foundation of Falcon rocket: the ever-upgrading Merlin engine[J]. Satellite & Network, 2017(6): 40- 41.
[17]KUMAR A, BHOWMIK R. A review on design features of the Falcon-9 space launch vehicle[J]. International Research Journal of Modernization in Engineering Technology and Science, 2021, 3(9): 575-584.
[18]GONCHAROV N, ORLOV V, RACHUK V, et al. Reusable launch vehicle propulsion based on the RD-0120 engine[C]//31st Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1995.
[19]余梦伦. 两级入轨重复使用运载器的方案探讨[J]. 装备指挥技术学院学报, 2006, 17(1): 1-5.
YU M L. A study of the two-stage-to-orbit reusable launch vehicle scheme[J]. Journal of the Academy of Equipment Command & Technology, 2006, 17(1): 1-5.
[20]李斌, 张小平, 高玉闪. 我国可重复使用液体火箭发动机发展的思考[J]. 火箭推进, 2017, 43(1): 1-7.
LI B, ZHANG X P, GAO Y S. Consideration on development of reusable liquid rocket engine in China[J]. Journal of Rocket Propulsion, 2017, 43(1): 1-7.
[21]尹亮, 刘伟强. 液氧/甲烷发动机研究进展与技术展望[J]. 航空兵器, 2018, 25(4): 21-27.
YIN L, LIU W Q. Review and prospect of LOx/methane rocket engine systems[J]. Aero Weaponry, 2018, 25(4): 21-27.
[22]张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4): 9-15.
ZHANG M Z, ZHANG M. Discussion on some problems of reusable liquid-propellant engine[J]. Journal of Rocket Propulsion, 2019, 45(4): 9-15.
[23]LI Y, FANG J, SUN B, et al. Index allocation for a reusable LOx/CH4 rocket engine[J]. Chinese Journal of Aeronautics, 2021, 34(2): 432- 440.
[24]刘士杰, 康红雷, 梁国柱. 液体火箭发动机重复使用性指标分配方法的初探[C]// 第三届空天推进技术会议论文集.厦门:[s.n.],2020.
[25]姚草根, 张大海, 刘凤娟, 等. 重复使用液体火箭发动机用材料及工艺研究进展[J]. 宇航材料工艺, 2023, 53(5): 1-14.
YAO C G, ZHANG D H, LIU F J, et al. Study on material and processing technology for reusable liquid rocket engine[J]. Aerospace Materials & Technology, 2023, 53(5): 1-14.
[26]刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626.
LIU S J, LIANG G Z. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626.
[27]容易, 刘辉, 于子文, 等. 可重复使用运载火箭返回段低温流体行为特性[J]. 航空学报, 2023, 44(23): 105-116.
RONG Y, LIU H, YU Z W, et al. Behavior of cryogenic propellant in return stage of reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 105-116.
[28]包为民. 可重复使用运载火箭技术发展综述[J]. 航空学报, 2023, 44(23): 8-33.
BAO W M. A review of reusable launch vehicle technology development[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 8-33.
[29]刘士杰. 液体火箭发动机涡轮泵可重复使用性研究[D]. 北京: 北京航空航天大学, 2017.
[30]YOSCHIDA M., TAKADA S, NARUO Y, et al. Development status of reusable rocket engine[J]. Trans.Jsass space tech.2009,7(26): 13-18.
[31]黄伟. 可重复使用航天器回收着陆技术综述[J]. 中国航天, 2023(8): 8-15.
HUANG W. Summary of recovery and landing technology of reusable spacecraft[J]. Aerospace China, 2023(8): 8-15.
[32]POWER R P A. Space shuttle main engine orientation[R]. BC98-04,2011.
[33]DUTHEIL J P, BOUÉ Y. Highly reusable LOx/LCH4 ACE rocket engine designed for spaceplane: technical maturation progress via key system demonstrators results[C]//7th European Conference for Aeronautics and Space Science.[S.l.]:[s.n.], 2017.
[34]BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: a review[J]. Materials & Design, 2021, 209: 110008.
[35]BALLARD R O. Next-generation RS-25 engines for the NASA Space Launch System[C]// 7th European Conference for Aeronautics and Space Sciences.[S.l.]:[s.n.], 2017.
[36]顾孟奇, 朱家才, 郭万林, 等. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J]. 航空学报, 2023, 44(23): 34-57.
GU M Q, ZHU J C, GUO W L, et al. Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 34-57.
[37]陈守芳, 李健, 熊莉芳, 等. 可重复使用发动机管路连接与密封可靠性工作思考[J]. 空天防御, 2023, 6(1): 6-10.
CHEN S F, LI J, XIONG L F, et al. Thinking on reliability of pipeline connection and seal of reusable engine[J]. Air & Space Defense, 2023, 6(1): 6-10.
[38]李伟, 石珊珊, 康红雷, 等. 24°球形管路接头低温密封性能研究[J]. 低温工程, 2023(3): 76-81.
LI W, SHI S S, KANG H L, et al. Study on cryogenic sealing performance of 24° orbicular pipe sealing joint[J]. Cryogenics, 2023(3): 76-81.
[39]AYER A. A basic comparison of the space shuttle main engine and the J-2X engine[R]. KSC-2007-162,2007.
[40]金平, 吕俊杰, 戚亚群, 等. 可重复使用液体火箭发动机寿命问题探讨[J]. 宇航总体技术, 2023, 7(4): 51-59.
JIN P, LYU J J, QI Y Q, et al. Discussion on the life of reusable liquid rocket engine[J]. Astronautical Systems Engineering Technology, 2023, 7(4): 51-59.
[41]张嘉益, 刘欣. 可重复使用航天器系统的可靠性分析[J]. 空间电子技术, 2023, 20(2): 40-47.
ZHANG J Y, LIU X. Reliability analysis of reusable spacecraft system[J]. Space Electronic Technology, 2023, 20(2): 40-47.
[42]KIM K O, ROH T, LEE J W, et al. Derating design for optimizing reliability and cost with an application to liquid rocket engines[J]. Reliability Engineering & System Safety, 2016, 146: 13-20.
[43]JIN P, CHEN Z W, LI R Z, et al. Opportunistic preventive maintenance scheduling for multi-unit reusable rocket engine system based on the variable maintenance task window method[J]. Aerospace Science and Technology, 2022, 121: 107346.
[44]刘哲, 张柏楠, 张宁, 等. 运载火箭可重复使用总体技术研究[J]. 中国航天, 2022(10): 36- 41.
LIU Z, ZHANG B N, ZHANG N, et al. Research on the overall technology of reusable launch vehicle[J]. Aerospace China, 2022(10): 36- 41.
[45]SpaceX. How much does it cost to launch a reused Falcon 9? Elon Musk explains why reusability is worth it[EB/OL].[2022-11-11].https://www.quora.com/What-is-the-the-total-cost-break-down-for-SpaceX-Falcon-9.
[46]杨浩亮, 杨毅强, 廉洁, 等. 商业可重复使用火箭关键技术与创新[J]. 中国航天, 2022(11): 8-14.
YANG H L, YANG Y Q, LIAN J, et al. Key technology and innovation of commercial reusable rocket[J]. Aerospace China, 2022(11): 8-14.
[47]肖红梅, 渠成兵, 刘玉, 等. 中科院理化所极低温力学测试系统介绍[C]// 第十三届全国实验力学学术会议.昆明:中国力学学会, 2012.
[48]邓群, 杜金辉, 赵长虹, 等. GH4169合金的低温性能[J]. 钢铁研究学报, 2011, 23(S2): 185-188.
DENG Q, DU J H, ZHAO C H, et al. Low temperature properties of GH4169 alloy[J]. Journal of Iron and Steel Research, 2011, 23(S2): 185-188.
[49]张允涛, 宋少伟, 王珺. 随机振动疲劳试验的小裂纹扩展分析方法[J]. 火箭推进, 2021, 47(2): 68-75.
ZHANG Y T, SONG S W, WANG J. Study on analysis method of small crack growth in random vibration fatigue test[J]. Journal of Rocket Propulsion, 2021, 47(2): 68-75.
[50]王长高. 以可靠性为中心的维修思想研究[J]. 北京航空航天大学学报(社会科学版), 1999, 12(1): 36-39.
WANG C G. Research on reliability-centered maintenance thought[J]. Journal of Beijing University of Aeronautics and Astronautics(Social Sciences Edition), 1999, 12(1): 36-39.
[51]陈勃, 鲍蕊, 张建宇, 等. 飞机结构耐久性/损伤容限综合设计与分析[J]. 北京航空航天大学学报, 2004, 30(2): 139-142.
CHEN B, BAO R, ZHANG J Y, et al. Combined design and analysis of durability and damage tolerance for flight structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(2): 139-142.
[52]李志洪, 彭小波, 谢红军, 等. 可重复使用商业运载火箭的发展与展望[J]. 中国航天, 2022(7): 27-33.
LI Z H, PENG X B, XIE H J, et al. Development and prospect of reusable commercial launch vehicle[J]. Aerospace China, 2022(7): 27-33.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(01):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(01):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(01):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(01):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(01):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(01):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(01):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(01):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(01):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(01):15.
备注/Memo
收稿日期:2023- 04- 26 修回日期:2023- 09- 05
基金项目:国防科工局xxx技术基础科研计划项目
作者简介:刘士杰(1985—),男,博士,高级工程师,研究领域为液体火箭发动机可重复使用性、疲劳与断裂、材料力学本构建模。
通信作者:郑大勇(1978—),男,博士,研究员,研究领域为液体火箭发动机总体设计。