PDF下载 分享
[1]张涵,张东升,朱卫平.液压成形对液体火箭发动机多层增强S型波纹管结构疲劳寿命的影响[J].火箭推进,2024,50(01):113-126.[doi:10.3969/j.issn.1672-9374.2024.01.011]
 ZHANG Han,ZHANG Dongsheng,ZHU Weiping.Effect of hydroforming on structural fatigue life of multilayer reinforced S-shaped bellows in liquid rocket engine[J].Journal of Rocket Propulsion,2024,50(01):113-126.[doi:10.3969/j.issn.1672-9374.2024.01.011]
点击复制

液压成形对液体火箭发动机多层增强S型波纹管结构疲劳寿命的影响

参考文献/References:

[1] 吴燕生. 中国航天运输系统的发展与未来[J]. 导弹与航天运载技术, 2007(5): 1- 4.
WU Y S. Development and future of space transportation system of China[J]. Missiles and Space Vehicles, 2007(5): 1- 4.
[2]王小军. 中国航天运输系统未来发展展望[J]. 导弹与航天运载技术, 2021(1): 1- 6.
WANG X J. Future development of space transportation system of China[J]. Missiles and Space Vehicles, 2021(1): 1- 6.
[3]包为民. 可重复使用运载火箭技术发展综述[J].航空学报,2023,44(23): 629555.
BAO W M.A review of reusable launch vehicle technology development[J]. Chinese Journal of Aeronautics, 2023,44(23): 629555.
[4]顾孟奇,朱家才,郭万林,等. 可重复使用运载火箭结构疲劳耐久性与可靠性展望[J].航空学报,2023,44(23):628299.
GU M Q, ZHU J C, GUO W L, et al.Prospects for fatigue durability and reliability of reusable launch vehicle structures[J]. Chinese Journal of Aeronautics, 2023, 44(23): 628299.
[5]崔朋, 刘阳, 朱雄峰, 等. 重复使用液体火箭发动机典型特征分析[J]. 载人航天, 2023, 29(3): 345- 353.
CUI P, LIU Y, ZHU X F, et al. Typical characteristic analysis of reusable liquid rocket engines[J]. Manned Spaceflight, 2023, 29(3): 345- 353.
[6]谭永华. 中国重型运载火箭动力系统研究[J]. 火箭推进, 2011, 37(1): 1- 6.
TAN Y H. Research on power system of heavy launch vehicle in China[J]. Journal of Rocket Propulsion, 2011, 37(1): 1- 6.
[7]李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831- 864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831- 864.
[8]叶梦思. 基于有限元分析的Ω形波纹管液压成形研究及波纹管轻量化设计[D]. 北京: 北京化工大学, 2018.
YE M S. Research on hydroforming of toroidal bellows and light-weight design of bellows based on finite element analysis[D].Beijing: Beijing University of Chemical Technology, 2018.
[9]HARTL C. Research and advances in fundamentals and industrial applications of hydroforming[J]. Journal of Materials Processing Technology, 2005, 167(2/3): 383-392.
[10]葛子余. 金属软管[M]. 北京: 宇航出版社, 1985.
[11]朱卫平, 黄黔. 中细柔性圆环壳整体弯曲的一般解及在波纹管计算中的应用(Ⅲ): C型波纹管的计算[J]. 应用数学和力学, 2002, 23(10): 1025-1034.
ZHU W P, HUANG Q. General solution of the overall bending of flexible circular ring shells with moderately slender ratio and applications to the bellows(Ⅲ): Calculation for C-shaped bellows[J]. Applied Mathematics and Mechanics, 2002, 23(10): 1025-1034.
[12]朱卫平, 黄黔. 中细柔性圆环壳整体弯曲的一般解及在波纹管计算中的应用(Ⅱ): Ω型波纹管的计算[J]. 应用数学和力学, 2002, 23(8): 798-804.
ZHU W P, HUANG Q. General solution of the overall bending of flexible circular ring shells with moderately slender ratio and applications to the bellows(Ⅱ): Calculation for omega-shaped bellows[J]. Applied Mathematics and Mechanics, 2002, 23(8): 798-804.
[13]徐学军, 任武, 袁喆, 等. 增强S型波纹管结构耐压强度分析技术[J]. 火箭推进, 2019, 45(1): 19-24.
XU X J, REN W, YUAN Z, et al. Compression strength analysis of the reinforced S-shaped bellows[J]. Journal of Rocket Propulsion, 2019, 45(1): 19-24.
[14]霍世慧, 许红卫, 朱卫平, 等. 增强S形波纹管内压稳定性分析方法[J]. 火箭推进, 2022, 48(4): 66-71.
HUO S H, XU H W, ZHU W P, et al. Buckling of the reinforced S-shaped bellows under internal pressure[J]. Journal of Rocket Propulsion, 2022, 48(4): 66-71.
[15]赵剑, 谭永华, 陈建华, 等. 重型发动机S型波纹管承压与变形补偿结构参数敏感特性[J]. 火箭推进, 2022, 48(2): 36- 44.
ZHAO J, TAN Y H, CHEN J H, et al. Sensitive characteristics of structural parameters of pressure bearing and deformation compensation of S-shaped bellows in heavy duty engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 36- 44.
[16]李上青. 基于有限元的波纹管疲劳寿命影响因素分析[J]. 管道技术与设备, 2016(3): 34- 37.
LI S Q. Analysis of factors of bellow's fatigue life based on finite element method[J]. Pipeline Technique and Equipment, 2016(3): 34- 37.
[17]陈友恒, 段玫. U形波纹管疲劳寿命有限元分析[J]. 材料开发与应用, 2013, 28(1): 62- 66.
CHEN Y H, DUAN M. Finite element analysis to fatigue life of U-shape bellows[J]. Development and Application of Materials, 2013, 28(1): 62- 66.
[18]王伟静, 杨玉强, 闫书丽, 等. 位移载荷作用下U形波纹管的疲劳寿命研究[J]. 压力容器, 2022, 39(1): 63- 68.
WANG W J, YANG Y Q, YAN S L, et al. Research on fatigue life of non-reinforced U-shaped bellows under displacement load[J]. Pressure Vessel Technology, 2022, 39(1): 63- 68.
[19]张祖铭, 李亮, 于文峰, 等. 三层U形波纹管疲劳寿命影响因素分析[J]. 压力容器, 2021, 38(10): 47- 52.
ZHANG Z M, LI L, YU W F, et al. Analysis of factors influencing fatigue life of three-layer U-shaped bellows[J]. Pressure Vessel Technology, 2021, 38(10): 47- 52.
[20]于长波, 王建军, 李楚林, 等. 多层U形波纹管的疲劳寿命有限元分析[J]. 压力容器, 2008, 25(2): 23- 27.
YU C B, WANG J J, LI C L, et al. Finite element analysis to multilayer U-shaped bellows' fatigue life[J]. Pressure Vessel Technology, 2008, 25(2): 23- 27.
[21]郜慧广, 刘静, 高亚东, 等. 考虑成形与循环滞后的波纹管疲劳寿命研究[J]. 重型机械, 2023(1): 19- 26.
GAO H G, LIU J, GAO Y D, et al. Research on fatigue life of bellows considering forming and cyclic hardening[J]. Heavy Machinery, 2023(1): 19- 26.
[22]YUAN Z, HUO S H, REN J T. Effects of hydroforming process on fatigue life of reinforced S-shaped bellows[J]. Key Engineering Materials, 2019, 795: 296- 303.
[23]张文良, 曹景浩, 马海峰. 金属波纹管疲劳寿命优化设计研究[J]. 阀门, 2022(6): 424- 427.
ZHANG W L, CAO J H, MA H F. Study on fatigue life optimization design of metal bellows[J]. Valve, 2022(6): 424- 427.
[24]薛克敏, 张容, 孙风成, 等. SUS321不锈钢波纹管液压成形组织演变和疲劳性能[J]. 塑性工程学报, 2023, 30(1): 28- 36.
XUE K M, ZHANG R, SUN F C, et al. Microstructure evolution and fatigue properties of SUS321 stainless steel bellows hydroforming[J]. Journal of Plasticity Engineering, 2023, 30(1): 28- 36.
[25]卢江, 陶红蕾, 孟宪斌, 等. 影响金属波纹管成形减薄量的主要因素[J]. 管道技术与设备, 2013(3): 58- 59.
LU J, TAO H L, MENG X B, et al. The main factors influemcing the thickness reduction of corrugated metal tube[J]. Pipeline Technique and Equipment, 2013(3): 58- 59.
[26]李晓旭, 付饶. 波纹管成型用薄板在不同热处理条件下组织和性能研究[J]. 管道技术与设备, 2023(4): 11- 17.
LI X X, FU R. Study on microstructure and properties of sheet for bellows corrugation under different heat treatment conditions[J]. Pipeline Technique and Equipment, 2023(4): 11- 17.
[27]李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148- 154.
LI K S, PENG J, PENG J. Influence of pre-strain on mechanical behavior of austenitic stainless steel and construction of constitutive models[J]. Journal of Materials Engineering, 2018, 46(11): 148- 154.
[28]韩豫, 陈学东, 刘全坤, 等. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2): 87- 92.
HAN Y, CHEN X D, LIU Q K, et al. Study on technique and properties of cold stretching for austenitic stainless steels[J]. Journal of Mechanical Engineering, 2012, 48(2): 87- 92.
[29]李凯, 薛河, 崔英浩, 等. 304不锈钢冷加工过程中应力-应变本构方程的建立与验证[J]. 塑性工程学报, 2019, 26(2): 225- 232.
LI K, XUE H, CUI Y H, et al. Establishment and validation of stress-strain constitutive equation during cold working of 304 stainless steel[J]. Journal of Plasticity Engineering, 2019, 26(2): 225- 232.
[30]孟庆当, 李河宗, 董湘怀, 等. 304不锈钢薄板微塑性成形尺寸效应的研究[J]. 中国机械工程, 2013, 24(2): 280- 283.
MENG Q D, LI H Z, DONG X H, et al. Investigation of size effects of 304 stainless steel foils in microforming processes[J]. China Mechanical Engineering, 2013, 24(2): 280- 283.
[31]姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.
[32]徐鹏. 金属材料应变寿命曲线估算的新方法[D]. 南京: 南京航空航天大学, 2012.
XU P. A new method for estimating strain life curve of metallic materials[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.

相似文献/References:

[1]杨进慧,戚亚群,金 平,等.重复使用液体火箭发动机结构可靠性分配[J].火箭推进,2018,44(06):39.
 YANG Jinhui,QI Yaqun,JIN Ping,et al.Allocation of structural reliability index for reusable liquid rocket engine[J].Journal of Rocket Propulsion,2018,44(01):39.
[2]武晓欣,贾洁羽,邢理想,等.重复使用液体火箭发动机原位无损检测技术应用及展望[J].火箭推进,2024,50(01):46.[doi:10.3969/j.issn.1672-9374.2024.01.004]
 WU Xiaoxin,JIA Jieyu,XING Lixiang,et al.Application and prospect of in-situ nondestructive testing of reusable liquid rocket engine[J].Journal of Rocket Propulsion,2024,50(01):46.[doi:10.3969/j.issn.1672-9374.2024.01.004]

备注/Memo

收稿日期:2023- 11- 06 修回日期:2023- 12- 20
基金项目:国家自然科学基金(12272213)
作者简介:张涵(1990—),男,博士,研究领域为波纹管结构力学仿真。

更新日期/Last Update: 1900-01-01