航天推进技术研究院主办
WANG Delong,WANG Wei,JIN Lu,et al.Optimization of fault feature extraction method for bearings of reusable rocket turbopumps[J].Journal of Rocket Propulsion,2024,50(01):0.[doi:10.3969/j.issn.1672-9374.2024.01.015]
重复使用火箭涡轮泵轴承故障特征提取方法优化
- Title:
- Optimization of fault feature extraction method for bearings of reusable rocket turbopumps
- 文章编号:
- 1672-9374(2024)01-0154-9
- Keywords:
- turbopump; rolling bearing; envelope spectrum; singular value decomposition; fault diagnosis
- 分类号:
- V434.21
- 文献标志码:
- A
- 摘要:
- 涡轮泵轴承是可重复使用火箭的关键,因此能够有效提取出轴承故障特征频率从而展开故障诊断十分重要。将奇异值分解(SVD)和包络谱解调法相结合,对火箭涡轮泵轴承展开故障特征提取。对轴承内环、外环及滚动体故障数据进行处理和分析,结果表明,针对信号中含有大量噪声的数据,相比传统的包络谱解调法,改进方法的故障特征提取效果明显提升。通过该方法提取出的3种故障低频特征频率的相对幅值相比于传统包络谱解调均有提升。同时,可以有效降低高频噪声的干扰,尤其在高频区依然可以看到比较明显的特征频率,而传统包络谱解调法的高频区基本被噪声覆盖。通过计算得出信号的信噪比均有60 dB以上的提升。
- Abstract:
- Turbo pump bearings are the key to reusable rockets. Therefore, it is very important to extract the bearing fault characteristic frequency effectively to carry out fault diagnosis. Singular value decomposition(SVD)and envelope spectrum demodulation are combined to extract the fault features of rocket turbopump bearings. By processing and analyzing the fault data of the bearing's inner ring, outer ring and rolling element, the results show that compared with the traditional envelope spectrum demodulation method, the improved method has significantly improved the fault feature extraction effect for the data with a lot of noise in the signal. Compared with traditional envelope spectrum demodulation, the relative amplitudes of three kinds of fault low frequency characteristic frequencies extracted by this method are improved. At the same time, it can effectively reduce the interference of high frequency noise. Especially in the high frequency region, characteristic frequency can still be seen more obviously, while the high frequency region of the traditional envelope spectrum demodulation method is basically covered by noise. Through calculation, the signal-to-noise ratio of the signal is improved by more than 60 dB.
参考文献/References:
[1] 马帅, 郭健鑫, 周磊, 等. 固体火箭发动机技术发展综述[J]. 火箭推进, 2023, 49(2): 1-14.
MA S, GUO J X, ZHOU L, et al. Review on technology development of solid rocket motor[J]. Journal of Rocket Propulsion, 2023, 49(2): 1-14.
[2]郑雄, 杨勇, 姚世东, 等. 法尔肯9可重复使用火箭发展综述[J]. 导弹与航天运载技术, 2016(2): 39-46.
ZHENG X, YANG Y, YAO S D, et al. Survey and review on development of falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2): 39-46.
[3]姚尚鹏, 黄红, 赵佳敏, 等. 涡轮泵典型故障仿真与辨识系统设计[J]. 火箭推进, 2023, 49(3): 96-104.
YAO S P, HUANG H, ZHAO J M, et al. Typical fault simulation and identification system design for turbopump[J]. Journal of Rocket Propulsion, 2023, 49(3): 96-104.
[4]李军星,朱文进,邱明,等.基于EM-IKF协同算法的滚动轴承剩余寿命预测[J/OL].航空动力学报,[2023-09-27].https://doi.org/10.13224/j.cnki.jasp.20230251.
LI J X, ZHU W J, QIU M, et al. Remaining life prediction of rolling bearings based on an EM-IKF collab orative algorithm[J/OL]. Journal of Aerospace Power.[2023-09-27].https://doi.org/10.13224/j.cnki.jasp.20230251.
[5]王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1): 63-72.
WANG G B, HE Z J, CHEN X F, et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72.
[6]赵志宏. 基于振动信号的机械故障特征提取与诊断研究[D]. 北京: 北京交通大学, 2012.
ZHAO Z H. Research on vibration signal based machinery fault feature extraction and diagnosis[D].Beijing: Beijing Jiaotong University, 2012.
[7]李珊珊. 基于冲击脉冲法的便携式轴承故障检测仪的设计与改进[J]. 仪表技术与传感器, 2014(4): 106-107.
LI S S. Design and improvement of portable bearing fault detector based on shock pulse method[J]. Instrument Technique and Sensor, 2014(4): 106-107.
[8]RANDALL R B. A history of cepstrum analysis and its application to mechanical problems[J]. Mechanical Systems and Signal Processing, 2017, 97: 3-19.
[9]TONG S G, FU Z L, TONG Z M, et al. Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2023, 24(5): 404-419.
[10]GAO H Z, LIANG L, CHEN X G, et al. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization[J]. Chinese Journal of Mechanical Engineering, 2015, 28(1): 96-105.
[11]何正嘉, 袁静, 訾艳阳. 机械故障诊断的内积变换原理与应用[M]. 北京: 科学出版社, 2012.
HE Z J, YUAN J, ZI Y Y. Principle and application of inner product transformation in mechanical fault diagnosis[M].Beijing: Science Press,2012.
[12]张振海, 王维庆, 王海云, 等. 基于改进小波包的风电机组齿轮箱复合故障特征提取研究[J]. 太阳能学报, 2022, 43(9): 331-336.
ZHANG Z H, WANG W Q, WANG H Y, et al. Research on composite fault feature extraction of wind turbine gearbox based on improved wavelet packet[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 331-336.
[13]YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96: 1-15.
[14]范文健, 毛万鑫, 吴疆. 车辆加速度信号的EMD和IIR滤波联合降噪方法[J]. 振动与冲击, 2021, 40(20):307-312.
FAN W J, MAO W X, WU J. Combined denoising method of vehicle acceleration signal based on EMD and IIR fil-tering[J]. Journal of Vibration and Shock, 2021, 40(20): 307-312.
[15]LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2): 108-126.
[16]GOLAFSHAN R, YUCE SANLITURK K. SVD and Hankel matrix based de-noising approach for ball bearing fault detection and its assessment using artificial faults[J]. Mechanical Systems and Signal Processing, 2016, 70/71: 36-50.
[17]陈恩利, 张玺, 申永军, 等. 基于SVD降噪和盲信号分离的滚动轴承故障诊断[J]. 振动与冲击, 2012, 31(23): 185-190.
CHEN E L, ZHANG X, SHEN Y J, et al. Fault diagnosis of rolling bearings based on SVD denoising and blind signals separation[J]. Journal of Vibration and Shock, 2012, 31(23): 185-190.
[18]尹进田, 唐杰, 刘丽, 等. 参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J]. 振动与冲击, 2021, 40(17): 234-240.
YIN J T, TANG J, LIU L, et al. Application of parameter synchronous optimization stochastic resonance in early weak fault diagnosis of traction drive system[J]. Journal of Vibration and Shock, 2021, 40(17): 234-240.
[19]谯自健, 束学道. 非对称势诱导随机共振增强机械重复瞬态提取[J]. 机械工程学报, 2021, 57(23): 160-168.
QIAO Z J, SHU X D. Stochastic resonance induced by asymmetric potentials enhanced mechanical repetitive transient extraction[J]. Journal of Mechanical Engineering, 2021, 57(23): 160-168.
[20]朱娟娟, 高丙朋, 王维庆. 基于随机共振的轴承微弱故障信号检测[J]. 轴承, 2021(12): 43-48.
ZHU J J, GAO B P, WANG W Q. Weak fault signal detection of bearings based on stochastic resonance[J]. Bearing, 2021(12): 43-48.
相似文献/References:
[1]张晨曦,马晓丹.火箭发动机涡轮泵集成设计系统[J].火箭推进,2015,41(04):79.
ZHANG Chenxi,MA Xiaodan.Integration design system for turbo pump
in rocket engine[J].Journal of Rocket Propulsion,2015,41(01):79.
[2]李 彤,刘站国,窦 昱,等.涡轮泵水力试验系统扭矩现场校准技术研究[J].火箭推进,2015,41(03):73.
LI Tong,LIU Zhan-guo,DOU Yu,et al.Field calibration technology for torque of
turbo pump hydraulic test system[J].Journal of Rocket Propulsion,2015,41(01):73.
[3]窦 唯,刘占生.液体火箭发动机涡轮泵转子弯扭耦合振动研究[J].火箭推进,2012,38(04):17.
DOU Wei,LIU Zhan-sheng.Research on bend-twist coupling vibration of liquid rocket engine turbopump rotors[J].Journal of Rocket Propulsion,2012,38(01):17.
[4]唐 飞,李家文.诱导轮平面叶栅汽蚀不稳定现象的数值分析[J].火箭推进,2011,37(01):34.
TANG Fei,LI Jia-wen.Numerical analysis of instable cavitation phenomenon in 2D blade cascade of inducer[J].Journal of Rocket Propulsion,2011,37(01):34.
[5]白东安,段增斌,张翠儒.涡轮泵端面密封性能与漏气量影响研究[J].火箭推进,2010,36(01):38.
Bai Dong'an,Duan Zenbin,Zhang Cuiru.Effects of leaking rate on turbopump end-face sealing performance[J].Journal of Rocket Propulsion,2010,36(01):38.
[6]邓长华,周云端.涡轮泵环形颗粒阻尼器设计[J].火箭推进,2009,35(05):29.
Deng Changhua,Zhou Yunduan.Design of circular particle damper for turbopump[J].Journal of Rocket Propulsion,2009,35(01):29.
[7]白东安.涡轮泵超低工况性能研究[J].火箭推进,2008,34(03):13.
Bai Dong'an.Research on the turbo-pump performance under
ultra--low operation condition[J].Journal of Rocket Propulsion,2008,34(01):13.
[8]凌桂龙,张黎辉,唐家鹏,等.泵压式氢/氧液体火箭发动机质量分析[J].火箭推进,2007,33(01):1.
Ling Guilong Zhang Lihui Tang Jiapeng.Mass analysis of pump-pressurized hydrogen/oxygen liquid propellant rocket engine[J].Journal of Rocket Propulsion,2007,33(01):1.
[9]黄智勇,李昌奂,黄红,等.高工况涡轮泵轴系状态对工作可靠性的影响[J].火箭推进,2007,33(01):32.
Huang Zhiyong,Li Changhuan,Huang Hong.The effect of high operating condition turbopump shafting status on reliability[J].Journal of Rocket Propulsion,2007,33(01):32.
[10]徐悦,田爱梅.基于CFD的涡轮泵转子密封流体激振研究进展[J].火箭推进,2005,31(01):8.
Xu Yue,Tian Aimei.Progress of investigation on turbopump annular seal fluid-induced vibration based on CFD[J].Journal of Rocket Propulsion,2005,31(01):8.
[11]黄金平,王 珺,黄道琼,等.涡轮泵滚动轴承-转子系统高速运行试验研究[J].火箭推进,2020,46(02):50.
HUANG Jinping,WANG Jun,HUANG Daoqiong,et al.Experimental study on high-speed running of rolling bearing-rotor system of turbo-pump[J].Journal of Rocket Propulsion,2020,46(01):50.
备注/Memo
收稿日期:2023- 10- 11 修回日期:2023- 11- 01
基金项目: 国家液体火箭发动机重点实验室基金(6142704220401, 6142704210403, 6142704220403)
作者简介:王得龙(2000—),男,硕士,研究领域为液体火箭发动机故障诊断及健康管理。