航天推进技术研究院主办
LIANG Wendong,ZHAO Mengyun,LIU Bo,et al.Numerical simulation on cryogenic cavitating flow characteristics of regulating valve[J].Journal of Rocket Propulsion,2024,50(02):98-106.[doi:10.3969/j.issn.1672-9374.2024.02.010]
调节阀低温空化流动特性的数值仿真
- Title:
- Numerical simulation on cryogenic cavitating flow characteristics of regulating valve
- 文章编号:
- 1672-9374202402-0098-09
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 采用数值计算的方法针对某型液体火箭发动机中液氧调节阀的流场分布和空化流动特性进行了研究。数值计算获得的阀门流通面积与液流实验数据基本吻合,验证了数值模型的准确性。分析了球阀内部流道压力、温度、涡和空穴结构的分布特性及不同工况下的演化规律。研究结果表明: 液氧流经球阀,压力变化分为缓慢下降、急剧下降、急剧回升、缓慢下降和缓慢回升这5个阶段。在阀芯流道内部观察到了显著的Q等值面结构。相同压差时,水的空化数大于液氧。空穴结构主要分布在阀芯入口,随着空化数的降低,逐渐向流道内部发展。对于常温水,发生空化的临界空化数为1.38左右。空穴结构的发展受空化数和热力学效应的耦合影响。液氧温度从95 K上升到100 K时,空化数减小,名义温降增加,此时热力学效应影响起主导作用,空穴的发展受到抑制。
- Abstract:
- Distributions of flow field and the characteristics of liquid oxygen cavitating flow inside the regulating valve of a liquid rocket engine are investigated by the numerical simulation method. The accuracy of the established model is verified by comparing the simulation results with the experimental data. Then, the evolution laws of pressure, temperature, vortex and cavity structures under different operating conditions are analyzed. The results indicate that the pressure undergoes five stages including slow decrease, sharp decrease, sharp increase, slow decrease and subsequent increase, when liquid oxygen flows through the ball valve. Notably, a significant Q structure is observed inside the flow channel. In addition, the cavitation number of room-temperature water is greater than that of liquid oxygen under the same pressure difference. The cavity structure initially grows at the valve inlet and gradually move towards the interior of the flow channel as the cavitation number decreases. For room temperature water, the critical cavitation number is around 1.38. Furthermore, the development of cavity structure is affected by both the cavitation number and thermodynamic effects. When the temperature of liquid oxygen rises from 95 K to 100 K, the cavitation number decreases and the nominal temperature drop increases. In this case, the thermodynamic effect controls the evolution of the cavitating flows and suppresses the development of cavity.
参考文献/References:
[1] 王博, 蒋平, 赵骞, 等. 氢氧火箭发动机组件研制阶段可靠性技术综述[J]. 火箭推进, 2021, 47(2): 1-8.
WANG B, JIANG P, ZHAO Q, et al. Review on reliability technology of hydrogen-oxygen rocket engine components in development[J]. Journal of Rocket Propulsion, 2021, 47(2): 1-8.
[2]孙纪国, 郑孟伟, 龚杰峰, 等. 220 tf补燃循环氢氧发动机研制进展[J]. 火箭推进, 2022, 48(2): 11-20.
SUN J G, ZHENG M W, GONG J F, et al. Development of staged combustion cycle LH2/LOX engine with 220 tf thrust[J]. Journal of Rocket Propulsion, 2022, 48(2): 11-20.
[3]李东, 王珏, 陈士强. 长征五号运载火箭动力系统总体技术分析[J]. 推进技术, 2021, 42(7): 1441-1448.
LI D, WANG J, CHEN S Q. Key technology analysis of CZ-5 launch vehicle propulsion system[J]. Journal of Propulsion Technology, 2021, 42(7): 1441-1448.
[4]贺杰.液压调节阀空化流场特性研究[D].北京:中国矿业大学,2019.
HE J. Investigation of cavitation flow characteristics in the regulating valve[D]. Beijing: China University of Mining and Technology, 2019.
[5]张希恒, 王宇, 张孙力. 基于动网格的调节阀空化流场数值模拟研究[J]. 化工机械, 2021, 48(4): 542-545.
ZHANG X H, WANG Y, ZHANG S L. Numerical simulation and research of cavitation flow field in control valve based on dynamic mesh[J]. Chemical Engineering & Machinery, 2021, 48(4): 542-545.
[6]TABRIZI A S, ASADI M, XIE G, et al. Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation[J]. Journal of Engineering Thermophysics, 2014, 23(1): 27-38.
[7]黄彪, 吴钦, 王国玉. 非定常空化流动研究现状与进展[J]. 排灌机械工程学报, 2018, 36(1): 1-14.
HUANG B, WU Q, WANG G Y. Progress and prospects of investigation into unsteady cavitating flows[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(1): 1-14.
[8]项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85.
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85.
[9]王维彬, 巩岩博. 50吨级氢氧火箭发动机的设计与研制[J]. 推进技术, 2021, 42(7): 1458-1465.
WANG W B, GONG Y B. Design and development of 50-ton LOX/LH2 rocket engine[J]. Journal of Propulsion Technology, 2021, 42(7): 1458-1465.
[10]孙纪国, 何学青, 阳代军, 等. 大推力氢氧发动机关键制造技术[J]. 火箭推进, 2022, 48(2): 117-126.
SUN J G, HE X Q, YANG D J, et al. Key manufacturing technology for large thrust LH2/LOX cycle engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 117-126.
[11]郑孟伟, 岳文龙, 孙纪国, 等. 我国大推力氢氧发动机发展思考[J]. 宇航总体技术, 2019(2): 12-17.
ZHENG M W, YUE W L, SUN J G, et al. Discussion on Chinese large-thrust hydrogen/oxygen rocket engine development[J]. Astronautical Systems Engineering Technology, 2019(2): 12-17.
[12]郑大勇, 颜勇, 孙纪国. 液氧甲烷发动机重复使用关键技术发展研究[J]. 导弹与航天运载技术, 2018(2): 31-35.
ZHENG D Y, YAN Y, SUN J G. Development study of key reusable technology for LOX/methane engine[J]. Missiles and Space Vehicles, 2018(2): 31-35.
[13]梁文栋, 王国玉, 黄彪, 等. 液氮空化流动的实验和数值计算研究[J]. 工程热物理学报, 2019, 40(10): 2299-2304.
LIANG W D, WANG G Y, HUANG B, et al. Experimental and numerical simulation of cavitating flows in liquid nitrogen[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2299-2304.
[14]LIANG W D, CHEN T R, WANG G Y, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121537.
[15]SARO SDY L R, ACOSTA A J. Note on observations of cavitation in different fluids[J]. Journal of Basic Engineering, 1961, 83(3): 399-400.
[16]CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76.
[17] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98.
[18]PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3): 277-282.
[19]KUBOTA A, KATO H, YAMAGUCHI H. A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics, 1992, 240: 59.
[20]CHEN J C, LIANG W D, HAN L, et al. Numerical investigation of compressible cryogenic cavitating flows by a modified mass transport model[J]. Physics of Fluids, 2023, 35(4): 043304.
[21]李哲, 魏志军, 张平. 燃气调压阀内流场三维数值模拟[J]. 固体火箭技术, 2007, 30(3): 210-213.
LI Z, WEI Z J, ZHANG P. 3D numerical simulation on internal flow field for pressure regulating valve of gas generator[J]. Journal of Solid Rocket Technology, 2007, 30(3): 210-213.
[22]CHERN M J, WANG C C, MA C H. Performance test and flow visualization of ball valve[J]. Experimental Thermal and Fluid Science, 2007, 31(6): 505-512.
[23]LIN Z H, LI J Y, JIN Z J, et al. Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations[J]. Energy, 2021, 226: 120376.
[24]ZHOU X, ZHI X Q, GAO X, et al. Cavitation evolution and damage by liquid nitrogen in a globe valve[J]. Journal of Zhejiang University: Science A, 2022, 23(2): 101-117.
[25]李永喜, 杨扬, 成世春, 等. 液化天然气输送系统超低温球阀介质流动仿真分析[J]. 阀门, 2023(4): 477-479.
LI Y X, YANG Y, CHENG S C, et al. Simulation analysis of medium flow of cryogenic ball valve in LNG transportation system[J]. Valve Magazine, 2023(4): 477-479.
[26]赵莹, 许健, 张强. 仿真技术在球阀特性研究中的应用[J]. 火箭推进, 2013, 39(6): 29-34.
ZHAO Y, XU J, ZHANG Q. Application of simulation technology in ball valve characteristic study[J]. Journal of Rocket Propulsion, 2013, 39(6): 29-34.
相似文献/References:
[1]赵双龙.调节阀特性研究[J].火箭推进,2010,36(02):40.
Zhao Shuanglong.Characteristics study of a regulating valve[J].Journal of Rocket Propulsion,2010,36(02):40.
[2]潘一力,周海清,程 诚.3000N液氧/液甲烷发动机方案与试验研究[J].火箭推进,2018,44(06):7.
RAN Yili,ZHOU Haiqing,CHENG Cheng.Scheme and test of 3000 N liquid oxygen and liquid
methane rocket engine[J].Journal of Rocket Propulsion,2018,44(02):7.
[3]王朝晖,孔维鹏,王 仙,等.富氢燃气与液氧爆轰及补燃特性试验研究[J].火箭推进,2019,45(06):10.
WANG Zhaohui,KONG Weipeng,WANG Xian,et al.Experimental study on the detonation and spontaneous combustion characteristics of hydrogen-rich gas and liquid oxygen[J].Journal of Rocket Propulsion,2019,45(02):10.
[4]梁文栋,许健,刘博,等.球型调节阀液动力矩特性仿真及优化设计[J].火箭推进,2024,50(03):53.[doi:10.3969/j.issn.1672-9374.2024.03.006]
LIANG Wendong,XU Jian,LIU Bo,et al.Simulation and optimization design of hydrodynamic torque characteristics of ball-type regulating valves[J].Journal of Rocket Propulsion,2024,50(02):53.[doi:10.3969/j.issn.1672-9374.2024.03.006]
备注/Memo
收稿日期:2023- 06- 18 修回日期:2023- 12- 13
基金项目:集团科技创新自主研发项目
作者简介:梁文栋(1994—),男,博士,工程师,研究领域为低温介质空化流体动力特性与机理、液体火箭发动机设计仿真。