航天推进技术研究院主办
LI Yandong,ZHAO Qiang,HU Haifeng,et al.Numerical analysis on effects of case grooving on cavitation performance of inducer[J].Journal of Rocket Propulsion,2024,50(02):122-129.[doi:10.3969/j.issn.1672-9374.2024.02.013]
壳体开槽对诱导轮空化性能影响的数值分析
- Title:
- Numerical analysis on effects of case grooving on cavitation performance of inducer
- 文章编号:
- 1672-9374202402-0122-08
- 分类号:
- V434.21
- 文献标志码:
- A
- 摘要:
- 为了提高诱导轮的空化性能,建立了壳体开槽诱导轮模型,采用数值计算方法对比了基准结构诱导轮和壳体开槽诱导轮的空化流动特性,通过分析不同空化数下叶片吸力面压力分布、诱导轮内部空化区的分布状态及扬程系数的变化,揭示了壳体开槽提高诱导轮空化性能的详细机理。结果表明:壳体开槽改变了叶尖泄漏流的发展方向,在叶尖附近形成大尺度涡流,减小了压力面和吸力面之间的压力梯度,改善了诱导轮内部的压力分布。壳体开槽诱导轮的初生空化数小于基准结构诱导轮,对空化的产生有抑制作用; 随着空化数从0.37减小到0.086,空化区域不断扩大,扬程系数几乎保持不变。相同空化数下,壳体开槽诱导轮的扬程系数略低于基准结构,但空化区明显较小,对空化的发展有一定的抑制作用。随着空化数的进一步减小,当空化数达到某个值附近,扬程系数先略微上升后再陡降直至发生空化断裂,壳体开槽诱导轮的临界空化数更小; 从空化初生至空化断裂,壳体开槽诱导轮较基准结构诱导轮空化性能均有所提升。
- Abstract:
- In order to improve the cavitation performance of the inducer, a case grooving inducer was established, cavitation performance and flow characteristics of the reference structure inducer and the case grooving inducer were compared with numerical computation method. The detailed mechanism of improving cavitation performance in case grooving manner was revealed by analyzing pressure distribution on the suction surface of the blade, the distribution of the cavitation area inside the inducer, and head coefficient change with different cavitation number. The results show that case grooving changes direction of the tip leakage flow, which makes a large-scale vortex near the tip, reduces pressure gradient between the pressure surface and the suction surface, and improves pressure distribution inside the inducer. The inception cavitation number of the case grooving inducer is smaller than that of the reference structure inducer, which has an inhibiting effect on cavitation. As the cavitation number decreases from 0.370 to 0.086, the cavitation area continues to expand, and head coefficient almost remains constant. At the same cavitation number, head coefficient of the case grooving inducer is slightly lower than the reference structure, but the cavitation area is significantly smaller, which has a certain inhibitory effect on the expansion of cavitation. As the cavitation number further decreases, when the cavitation number reaches a certain value, the head coefficient first rises slightly and then drops sharply until cavitation crisis occurs. The critical cavitation number of case grooving inducer is smaller. From cavitation inception to cavitation crisis, cavitation performance of the case grooving inducer improves compared with that of the reference structure inducer.
参考文献/References:
[1] 颜子初. 高性能螺旋轮设计的探讨[J]. 导弹与航天运载技术, 1998(5): 12-20.
YAN Z C. A study on the design of high performance inducers[J]. Missiles and Space Vehicles, 1998(5): 12-20.
[2]陈士强, 黄辉, 邵业涛, 等. 航天动力系统未来需求方向及发展建议的思考[J]. 宇航总体技术, 2019(1): 62-70.
CHEN S Q, HUANG H, SHAO Y T, et al. Study on the requirement trend and development suggestion for China space propulsion system[J]. Astronautical Systems Engineering Technology, 2019(1): 62-70.
[3]杨宝锋, 金路, 许开富, 等. 考虑密封耦合效应的涡轮泵转子动力学特性[J]. 火箭推进, 2022, 48(3): 16-24.
YANG B F, JIN L, XU K F, et al. Analysis on rotor dynamic of a turbopump considering seal coupling effect[J]. Journal of Rocket Propulsion, 2022, 48(3): 16-24.
[4]姚尚鹏, 黄红, 赵佳敏, 等. 涡轮泵典型故障仿真与辨识系统设计[J]. 火箭推进, 2023, 49(3): 96-104.
YAO S P, HUANG H, ZHAO J M, et al. Typical fault simulation and identification system design for turbopump[J]. Journal of Rocket Propulsion, 2023, 49(3): 96-104.
[5]ENOMOTO N. Suppression of cavitation surge of a helical inducer occurring in partial flow condition[C]//5th International Symposium on Cavitation. Osaka, Japan:[s.n.], 2003.
[6]FUJII A, MIZUNO S, HORIGUCHI H, et al. Suppression of cavitation instabilities by jet injection at inducer inlet[C]//ASME 2005 Fluids Engineering Division Summer Meeting. Texas, USA: ASME, 2008.
[7]唐飞, 李家文, 陈晖, 等. 采用环形入口壳体的诱导轮汽蚀性能研究[J]. 机械工程学报, 2011, 47(4): 171-176.
TANG F, LI J W, CHEN H, et al. Study on cavitation performance of inducer with annulus inlet casing[J]. Journal of Mechanical Engineering, 2011, 47(4): 171-176.
[8]李欣, 李家文, 王珏, 等. 带螺旋静叶诱导轮的气蚀性能[J]. 北京航空航天大学学报, 2016, 42(12): 2654-2661.
LI X, LI J W, WANG J, et al. Cavitation performance of inducer with helical static blades[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2654-2661.
[9]TORRE L, PASINI A, CERVONE A, et al. Effect of tip clearance on the performance of a three-bladed axial inducer[J]. Journal of Propulsion and Power, 2011, 27(4): 890-898.
[10]KIM S, CHOI C, KIM J, et al. Effects of tip clearance on performance and characteristics of backflow in a turbopump inducer[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2013, 227(8): 847-857.
[11]KIM S, CHOI C, KIM J, et al. Tip clearance effects on cavitation evolution and head breakdown in turbopump inducer[J]. Journal of Propulsion and Power, 2013, 29(6): 1357-1366.
[12]LI X, LI J W, WANG J, et al. Study on cavitation instabilities in a three-bladed inducer[J]. Journal of Propulsion and Power, 2015, 31(4): 1051-1056.
[13]HASHIMOTO T, YOSHIDA M, WATANABE M, et al. Experimental study on rotating cavitation of rocket propellant pump inducers[J]. Journal of Propulsion and Power, 1997, 13(4): 488-494.
[14]SHIMAGAKI M, WATANABE M, HASHIMOTO T, et al. Effect of the casing configurations on the internal flow in rocket pump inducer[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[15]TOMARU H, UGAJIN H, KAWASAKI S, et al. Suppresson of cavitation surge in a turbopump inducer by the backflow restriction step[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[16]CHOI Y D, KUROKAWA J, IMAMURA H. Suppression of cavitation in inducers by J-grooves[J]. Journal of Fluids Engineering, 2007, 129(1): 15-22.
[17] SHIMIYA N, FUJII A, HORIGUCHI H, et al. Suppression of cavitation instabilities in an inducer by J groove[J]. Journal of Fluids Engineering, 2008, 130(2): 1.
[18]岳恒茂, 张静, 李家文. 带螺旋槽诱导轮的气蚀性能研究[J]. 导弹与航天运载技术, 2019(6): 52-57.
YUE H M, ZHANG J, LI J W. Study on the cavitation performance of an inducer with helical grooves[J]. Missiles and Space Vehicles, 2019(6): 52-57.
[19]李欣, 胡声超, 周佑君, 等. 螺旋槽对诱导轮气蚀性能影响研究[J]. 推进技术, 2020, 41(3): 553-558.
LI X, HU S C, ZHOU Y J, et al. Study on cavitation performance of a inducer with helical grooves[J]. Journal of Propulsion Technology, 2020, 41(3): 553-558.
[20]XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177.
[21]项乐, 陈晖, 谭永华, 等. 诱导轮空化流动特性实验研究[J]. 农业机械学报, 2019, 50(12): 125-132.
XIANG L, CHEN H, TAN Y H, et al. Experiment of cavitating flow characteristics of inducer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 125-132.
[22]李欣, 肖立明, 刘畅, 等. 变螺距诱导轮的气蚀性能研究[J]. 火箭推进, 2017, 43(2): 1-8.
LI X, XIAO L M, LIU C, et al. Study on cavitation performance of variable-pitch inducer[J]. Journal of Rocket Propulsion, 2017, 43(2): 1-8.
相似文献/References:
[1]唐 飞,李家文,李 永,等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进,2013,39(03):44.
TANG Fei,LI Jia-wen,LI Yong,et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion,2013,39(02):44.
备注/Memo
收稿日期:2023- 07- 10 修回日期:2023- 08- 26
基金项目:国家联合基金(U1737112)
作者简介:李炎栋(1993—),男,硕士,工程师,研究领域为液体火箭发动机流动、传热与燃烧。