航天推进技术研究院主办
XIANG Le,LI Chunle,XU Kaifu,et al.Numerical simulation on LOX cavitating flow characteristics of inducer[J].Journal of Rocket Propulsion,2024,50(03):11-18.[doi:10.3969/j.issn.1672-9374.2024.03.002]
诱导轮液氧空化流动特性数值仿真
- Title:
- Numerical simulation on LOX cavitating flow characteristics of inducer
- 文章编号:
- 1672-9374(2024)03-0011-08
- Keywords:
- inducer; LOX cavitation; numerical simulation; cavitation model; thermal effect
- 分类号:
- TV131.32; V431
- 文献标志码:
- A
- 摘要:
- 诱导轮是决定涡轮泵抗空化能力的关键部件,为了揭示诱导轮内部液氧空化流动特性,建立了基于能量方程源项修正的低温空化数值计算方法,同时耦合了液氧物性随温度变化关系,利用经典低温空化和诱导轮空化试验数据进行了充分验证,对某三叶片诱导轮内部液氧空化流动进行了仿真分析。结果表明:低温介质空化过程中与周围液体存在剧烈的能量交换,但只有一部分空化溃灭释放的热量被传递至周围流场,通过调节能量方程源项中空化溃灭释热比例可使空化区尾部温度场预测精度提升0.5%。对比等温计算,考虑热效应后,液氧空化区范围和内部汽相体积分数大幅减小,对流道的阻塞程度降低,有效延缓了诱导轮扬程断裂。对3种温度下液氧空化流动进行仿真研究,发现液氧温度越高,空化范围越小,同时空化区温降越大,诱导轮空化性能改善也越显著。
- Abstract:
- Inducer is key component which determinates the anti-cavitation ability of a turbopump. In order to clarify the LOX cavitation flow characteristic inside the inducer, a novel numerical simulation for cryogenic cavitation method has been built based on the correction of energy equation source term, and the relationship between physical properties and temperature variation is coupled. The numerical method has been verified by the classical cryogenic cavitation and the inducer cavitation experimental data. Then, a simulation analysis of cavitation flow inside a three-bladed inducer are conducted, and it is found that: there is strong energy exchange between cavities and the surrounding liquid during the cryogenic cavitation, but only part of the heat released by the cavitation collapse can be transferred to the surrounding liquid. By adjusting the heat release ratio of heat by cavitation collapse in the source term of energy equation, the prediction precision of temperature field near the cavity rear can be improved by 0.5%. Compared with isothermal calculation results, the LOX cavitation area and vapor volume fraction decrease remarkably when the thermal effect is considered, thus the blocking effect to the blade channels decreases either, and the inducer head breakdown is delayed effectively. The simulation study of the LOX cavitation flow at different temperature shows that the higher the liquid oxygen temperature, the smaller the cavitation range, and the larger the temperature drop in the cavitation region, the more significant the improvement of cavitation performance for the induced wheel.
参考文献/References:
[1] ROBERT S, RUGGERI R D. Prediction of thermodynamic effects of developed cavitation based on liquid-hydrogen and Freon 114 in scaled venturis[R]. NASA TN D-4899,1968.
[2]HORD J. Cavitation in liquid cryogen II:hydrofoil[R]. NASA-CR-2156,1973.
[3]HORD J. Cavitation in liquid cryogen III:ogives[R]. NASA-CR-2242,1973.
[4]YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278.
[5]YOSHIDA Y, SASAO Y, WATANABE M, et al. Thermodynamic effect on rotating cavitation in an inducer[J]. Journal of Fluids Engineering, 2009, 131(9): 1.
[6]ITO Y, TSUNODA A, KURISHITA Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects[J]. Journal of Propulsion and Power, 2016, 32(1): 71-82.
[7]ITO Y, SATO Y, NAGASAKI T. Theoretical analyses of the number of backflow vortices on an axial pump or compressor[C]//ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference.San Francisco, California: ASME,2019.
[8]CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76.
[9]CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630.
[10]HOSANGADI A, AHUJA V. Numerical study of cavitation in cryogenic fluids[J]. Journal of Fluids Engineering, 2005, 127(2): 267-281.
[11]MERKLE C L, FENG J, BUELOW P. Computational modeling of dynamics of sheet cavitation[C]//3rd International Symposium on Cavitation.Grenoble,France:[s.n.],1998.
[12]HOSANGADI A, AHUJA V, UNGEWITTER R J, et al. Analysis of thermal effects in cavitating liquid hydrogen inducers[J]. Journal of Propulsion and Power, 2007, 23(6): 1225-1234.
[13]SONG P, SUN J J, HUO C J. Cavitating flow suppression for a two-phase liquefied natural gas expander through collaborative fine-turning design optimization of impeller and exducer geometric shape[J]. Journal of Fluids Engineering, 2020, 142(5): 051401.
[14]LE A D, OKAJIMA J, IGA Y. Numerical simulation study of cavitation in liquefied hydrogen[J]. Cryogenics, 2019, 101: 29-35.
[15]LIU M J, LI W, LI H M, et al. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects[J]. Cryogenics, 2023, 133: 103697.
[16]SINGHAL A K, ATHAVALE M M, LI H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617-624.
[17]TSUDA S I, TANI N, YAMANISHI N. Development and validation of a reduced critical radius model for cryogenic cavitation[J]. Journal of Fluids Engineering, 2012, 134(5): 1.
[18]YANG B F, LI B, CHEN H, et al. Numerical investigation of the clocking effect between inducer and impeller on pressure pulsations in a liquid rocket engine oxygen turbopump[J]. Journal of Fluids Engineering, 2019, 141(7): 071109.
[19]YANG B F, LI B, CHEN H, et al. Entropy production analysis for the clocking effect between inducer and impeller in a high-speed centrifugal pump[J]. Journal of Mechanical Engineering Science, 2019, 233(15): 5302-5315.
[20]项乐, 谭永华, 陈晖, 等. 水温对空化流动影响的数值研究[J]. 推进技术, 2020, 41(6): 1324-1333.
XIANG L, TAN Y H, CHEN H, et al. Numerical study of effects of water temperature on cavitating flow[J]. Journal of Propulsion Technology, 2020, 41(6): 1324-1333.
[21]项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85.
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85.
[22]李雨濛, 陈晖, 项乐, 等. 水翼非定常空化流动中湍流模型研究[J]. 火箭推进, 2019, 45(6): 29-37.
LI Y M, CHEN H, XIANG L, et al. Study on turbulent model of unsteady cavitating flow around hydrofoil[J]. Journal of Rocket Propulsion, 2019, 45(6): 29-37.
[23]XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9): 168-177.
相似文献/References:
[1]唐 飞,李家文,李 永,等.热力学效应对低温诱导轮旋转汽蚀影响的数值研究[J].火箭推进,2013,39(02):29.
TANG Fei,LI Jia-wen,LI Yong,et al.Influence of thermodynamics effect on inducer rotating cavitation under low temperature condition[J].Journal of Rocket Propulsion,2013,39(03):29.
[2]唐 飞,李家文,李 永,等.提高液体火箭发动机诱导轮汽蚀性能的研究[J].火箭推进,2013,39(03):44.
TANG Fei,LI Jia-wen,LI Yong,et al.Study on improving cavitation performance of inducer for liquid rocket engine[J].Journal of Rocket Propulsion,2013,39(03):44.
[3]张翠儒,宋 勇,毋 杰,等.一种平板螺旋式诱导轮的扬程计算法[J].火箭推进,2013,39(05):51.
ZHANG Cui-ru,SONG Yong,WU Jie,et al.A calculation method of delivery lift of flat-plate helical inducer[J].Journal of Rocket Propulsion,2013,39(03):51.
[4]史 勇,何卫东,卢 博.插铣技术在诱导轮加工中的应用[J].火箭推进,2014,40(01):76.
SHI Yong,HE Wei-dong,LU Bo.Application of plunge milling in inducer machining[J].Journal of Rocket Propulsion,2014,40(03):76.
[5]庄宿国,罗 鹏,侯宁涛,等.基于Pro/E平台的诱导轮参数化造型软件开发[J].火箭推进,2014,40(03):68.
ZHUANG Su-guo,LUO Peng,HOU Ning-tao,et al.Parametrization sculpting software development
for inducer based on Pro/E[J].Journal of Rocket Propulsion,2014,40(03):68.
[6]叶汉玉,李家文,李 欣.诱导轮旋转汽蚀数值模拟[J].火箭推进,2014,40(04):43.
YE Han-yu,LI Jia-wen,LI Xin.Numerical simulations of rotating cavitation in inducer[J].Journal of Rocket Propulsion,2014,40(03):43.
[7]侯 杰,于海力,杨 敏.低汽蚀余量高速泵诱导轮研究[J].火箭推进,2014,40(06):16.
HOU Jie,YU Hai-li,YANG Min.Study of inducers for low-NPSHr high-speed pumps[J].Journal of Rocket Propulsion,2014,40(03):16.
[8]宋沛原,李家文,唐 飞.轮毂形状对诱导轮性能的影响[J].火箭推进,2012,38(02):38.
SONG Pei-yuan,LI Jia-wen,TANG Fei.Effect of hub shape on performance of inducer[J].Journal of Rocket Propulsion,2012,38(03):38.
[9]褚宝鑫,须 村,张晓娜,等.诱导轮空化对流固耦合应力分析的影响[J].火箭推进,2012,38(02):44.
CHU Bao-xin,XU Cun,ZHANG Xiao-na,et al.Influence of inducer cavitation on fluid-solid coupled stress analysis[J].Journal of Rocket Propulsion,2012,38(03):44.
[10]唐 飞,李家文.诱导轮平面叶栅汽蚀不稳定现象的数值分析[J].火箭推进,2011,37(01):34.
TANG Fei,LI Jia-wen.Numerical analysis of instable cavitation phenomenon in 2D blade cascade of inducer[J].Journal of Rocket Propulsion,2011,37(03):34.
备注/Memo
收稿日期:2023- 11- 20修回日期:2024- 03- 12
基金项目:国家重大基础研究项目(613321)
作者简介:项乐(1991—),男,博士,研究领域为涡轮泵设计。