PDF下载 分享
[1]刘梦莹,徐晨恩,黄河峡,等.固体火箭发动机中最终凝相产物特性分析[J].火箭推进,2024,50(03):90-101.[doi:10.3969/j.issn.1672-9374.2024.03.010]
 LIU Mengying,XU Chen'en,HUANG Hexia,et al.Characteristics of final condensate products in solid rocket engine[J].Journal of Rocket Propulsion,2024,50(03):90-101.[doi:10.3969/j.issn.1672-9374.2024.03.010]
点击复制

固体火箭发动机中最终凝相产物特性分析

参考文献/References:

[1] 董师颜,张兆良. 固体火箭发动机原理[M]. 北京: 北京理工大学出版社, 1996.
[2]张明, 梁彦, 唐庆明. 纳米铝粉在固体推进剂中的应用[J]. 火箭推进, 2006, 32(1): 35-39.
ZHANG M, LIANG Y, TANG Q M. Progress in the application of nano aluminum powder in solid propellants[J]. Journal of Rocket Propulsion, 2006, 32(1): 35-39.
[3]AO W, LIU P J, YANG W J. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant[J]. Acta Astronautica, 2016, 129: 147-153.
[4]LIU H, AO W, LIU P J, et al. Experimental investigation on the condensed combustion products of aluminized GAP-based propellants[J]. Aerospace Science and Technology, 2020, 97: 105595.
[5]LIU Z, LI S P, LIU M Y, et al. Experimental investigation of the combustion products in an aluminised solid propellant[J]. Acta Astronautica, 2017, 133: 136-144.
[6]胡松启, 王鹏飞, 刘凯, 等. 含石蜡燃料初步研究[J]. 火箭推进, 2011, 37(6): 43-46.
HU S Q, WANG P F, LIU K, et al. Pilot study on solid fuel containing paraffin[J]. Journal of Rocket Propulsion, 2011, 37(6): 43-46.
[7]LIU M Y, LIU Z, LI S P, et al. Characterization of the initial agglomerates of aluminized composite propellants[J]. Acta Astronautica, 2021, 188: 130-139.
[8]LIU M Y, YU W H, LI S P. Factors in condensate product particle size during aluminized propellant combustion[J]. AIAA Journal, 2023, 61(8): 3393-3403.
[9]MENGYING L, SHIPENG L, LIU Z, et al. Numerical simulation on the infrared characteristic of the jet plume of a solid rocket motor[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2017.
[10]凌江, 徐义华, 孙海俊, 等. 燃气喷射角度对含硼固体火箭超燃冲压发动机补燃室燃烧效率的影响[J]. 火箭推进, 2022, 48(1): 69-75.
LING J, XU Y H, SUN H J, et al. Effect of gas injection angle on combustion efficiency of secondary combustion chamber for solid rocket scramjet containing boron[J]. Journal of Rocket Propulsion, 2022, 48(1): 69-75.
[11]何国强, 王国辉, 蔡体敏, 等. 高过载条件下固体发动机内流场及绝热层冲蚀研究[J]. 固体火箭技术, 2001, 24(4): 4-8.
HE G Q, WANG G H, CAI T M, et al. Investigation on internal f low and insulator erosion of SRM under high acceleration[J]. Journal of Solid Rocket Technology, 2001, 24(4): 4-8.
[12]LI Z Y, WANG N F, SHI B L, et al. Effects of particle size on two-phase flow loss in aluminized solid rocket motors[J]. Acta Astronautica, 2019, 159: 33-40.
[13]BABUK V, VASIL'EV V A, POTEKHIN A N. Experimental investigation of agglomeration during combustion of aluminized solid propellants in an acceleration field[J]. Combustion, Explosion, and Shock Waves, 2009, 45: 32-39.
[14]ZHAO D, LI X Y. A review of acoustic dampers applied to combustion chambers in aerospace industry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[15]LIAW P, CHEN Y S, SHANG H M, et al. Particulate multi-phase flowfield calculation with combustion/breakup models for solid rocket motor[C]//30th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1994.
[16]HERMSEN R. Aluminum combustion efficiency in solid rocket motors[C]//19th Aerospace Sciences Meeting. Reston, Virginia: AIAA, 1981.
[17]MAJDALANI J, KATTA A, BARBER T A, et al. Characterization of particle trajectories in solid rocket motors[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[18]SIPPEL T R, SON S F, GROVEN L J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J]. Combustion and Flame, 2014, 161(1): 311-321.
[19]JAYARAMAN K, CHAKRAVARTHY S R, SARATHI R. Quench collection of nano-aluminium agglomerates from combustion of sandwiches and propellants[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1941-1947.
[20]ANAND K V, ROY A, MULLA I, et al. Experimental data and model predictions of aluminium agglomeration in ammonium perchlorate-based composite propellants including plateau-burning formulations[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2139-2146.
[21]DOBBINS R A, STRAND L D. A comparison of two methods of measuring particle size of Al2O3 produced by a small rocket motor[J]. AIAA Journal, 1970, 8(9): 1544-1550.
[22]徐启. 固体火箭发动机羽流凝聚相颗粒分析研究[D]. 北京: 北京理工大学, 2016.
XU Q. Solid rocket motor plume condensed phase particle analysis research[D]. Beijing: Beijing Institute of Technology, 2016.
[23]SAMBAMURTHI J K. Al2O3 collection and sizing from solid rocket motor plumes[J]. Journal of Propulsion and Power, 1996, 12(3): 598-604.
[24]GIRATA J, MCGREGOR W. Particle sampling of solid rocket motor/SRM/exhausts in high-altitude test cells[C]//21st Aerospace Sciences Meeting. Reno, NV. Reston, Virginia: AIAA, 1983.
[25]MAURICE M S. Particle size distribution technique using conventional laser Doppler velocimetry measurements[J]. AIAA Journal, 1996, 34(6): 1209-1215.
[26]BALAKUMAR B J, ADRIAN R J. Experiments in fluids experimental methods and their applications to fluid flow[M]. Berlin: Springer-Verlag, 2003.
[27]EDWARDS T, HORTON K G, REDMAN D. Measurement of particulates in solid propellant rocket motors[D]. Monterey: Naval Postgraduate School, 1986.
[28]SAMBAMURTHI J K, PRICE E W, SIGMAN R K. Aluminum agglomeration in solid-propellant combustion[J]. AIAA Journal, 1984, 22(8): 1132-1138.
[29]LIU T K, PERNG H C, LUH S P, et al. Aluminum agglomeration in ammonium perchlorate/cyclotrimethylene trinitramine/aluminum/hydroxy-terminated polybutadiene propellant combustion[J]. Journal of Propulsion and Power, 1992, 8(6): 1177-1184.
[30]刘鑫, 刘佩进, 金秉宁, 等. 复合推进剂中铝燃烧实验研究[J]. 推进技术, 2016, 37(8): 1579-1585.
LIU X, LIU P J, JIN B N, et al. An experimental investigation of aluminum combustion in composite propellent[J]. Journal of Propulsion Technology, 2016, 37(8): 1579-1585.
[31]MANSER J R. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe[D]. Monterey: Naval Postgraduate School, 1986.
[32]POWERS J P. Automatic particle sizing from rocket motor holograms[EB/OL]. [2023-08-25]. https://xueshu.baidu.com/usercenter/paper/show?paperid=2fd780568096
f3613d224133804036b9&site=xueshu-se, 1992.
[33]MCCRORIE J D. Particle behavior in solid propellant rocket motors and plumes[D]. Monterey: Naval Postgraduate School, 1992.
[34]TRAINEAU J, KUENTZMANN P, PREVOST M, et al. Particle size distribution measurements in a subscale motor for the Ariane 5 solid rocket booster[C]//28th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1992.
[35]YOUNGBORG E D. Application of laser diffraction techniques to particle sizing in solid propellant rocket motors[D]. Monterey: Naval Postgraduate School, 1991.
[36]HOVLAND D L. Particle sizing in solid rocket motors[D]. Monterey: Naval Postgraduate School, 1989.
[37]LAREDO D, MCCRORIE J D, VAUGHN J K, et al. Motor and plume particle size measurements in solid propellant micromotors[J]. Journal of Propulsion and Power, 1994, 10(3): 410-418.
[38]周海清. 脉冲推力器点火过程数值模拟及尾焰检测技术研究[D]. 北京: 北京理工大学, 2005.
[39]LIU M Y. Analysis of agglomeration behaviors of aluminized composite propellants[J]. Case Studies in Thermal Engineering, 2023, 44: 102852.

相似文献/References:

[1]徐学文,牟俊林,任建存,等.固体火箭发动机喷管瞬态流场特性分析[J].火箭推进,2015,41(05):49.
 XU Xuewen,MU Junlin,REN Jiancun,et al.The analyses of transient flow-field characteristics in the nozzle of SRM[J].Journal of Rocket Propulsion,2015,41(03):49.
[2]宋亚飞,高 峰,杨小秋.来流马赫数对射流矢量喷管内流场影响的动态模拟[J].火箭推进,2011,37(06):38.
 SONG Ya-fei,GAO Feng,YANG Xiao-qiu.Dynamic simulation for effect of incoming flow Mach number on internal flow field of fluidic thrust vectoring nozzle[J].Journal of Rocket Propulsion,2011,37(03):38.
[3]宋亚飞,高 峰,曾 华,等.射流推力矢量喷管中粒子运动轨迹的数值模拟[J].火箭推进,2011,37(02):48.
 SONG Ya-fei,GAO Feng,ZENG Hua,et al.Numerical simulation of particle trajectory in fluidic thrust vector nozzle[J].Journal of Rocket Propulsion,2011,37(03):48.
[4]靳瑞斌,向红军.一种新的模拟固体火箭发动机射流铝颗粒燃烧的方法[J].火箭推进,2010,36(06):25.
 JIN Rui-bin,XIANG Hong-jun.New method of numerical simulation of combustion aluminium droplet in exhaust plume for SRM[J].Journal of Rocket Propulsion,2010,36(03):25.
[5]艾春安,高利荣,吴安法.固体火箭发动机多层结构壳体的 导波频散特性分析[J].火箭推进,2008,34(05):16.
 Ai Chun'an,Gao Lirong,Wu Anfa.Analysis of dispersive characteristics of guided waves for multi-layered structure of solid rocket motor shell[J].Journal of Rocket Propulsion,2008,34(03):16.
[6]王鹏,李旭昌,徐颖军,等.固体火箭发动机总体优化设计[J].火箭推进,2007,33(04):16.
 Wang Peng,Li Xuchang,Xu Yingjun.The optimal design of solid rocket motors[J].Journal of Rocket Propulsion,2007,33(03):16.
[7]艾春安,李剑,王斌,等.环境温度对固体火箭发动机气密性检查影响分析[J].火箭推进,2006,32(03):8.
 Ai Chunan,Li Jian,Wang Bin.Influence of ambient temperature on solid rocket motor airtight test[J].Journal of Rocket Propulsion,2006,32(03):8.
[8]李 媛,孙展鹏,周艳青,等.某固体火箭发动机药柱温度场有限元分析[J].火箭推进,2019,45(02):32.
 LI Yuan,SUN Zhanpeng,ZHOU Yanqing,et al.Finite element analysis of grain temperature field for a solid rocket motor[J].Journal of Rocket Propulsion,2019,45(03):32.
[9]严博燕,吕江彦,刘元敏.固体火箭发动机喷管扩张段壳体结构优化设计[J].火箭推进,2019,45(03):54.
 YAN Boyan,LYU Jiangyan,LIU Yuanmin.Optimal design on solid rocket motor nozzle divergent cone[J].Journal of Rocket Propulsion,2019,45(03):54.
[10]孙 迪,马 亮,甘晓松,等.嵌金属丝两级药柱掺混燃烧下的内弹道计算[J].火箭推进,2019,45(03):59.
 SUN Di,MA Liang,GAN Xiaosong,et al.Internal ballistics calculation under mixing combustion of two-stage grain with embedded wire[J].Journal of Rocket Propulsion,2019,45(03):59.

备注/Memo

收稿日期:2023- 11- 25修回日期:2024- 01- 17
基金项目:国家自然科学基金(22205107); 江苏省卓越博士后计划(2022BZ212); 进排气技术教育部重点实验室基金(CEPE2020012)
作者简介:刘梦莹(1994—),女,博士,讲师,研究领域为金属颗粒掺混燃烧特性。
通信作者:黄河峡(1989—),男,博士,副教授,研究领域为内流空气动力学。

更新日期/Last Update: 1900-01-01