航天推进技术研究院主办
LIU Mengying,XU Chen'en,HUANG Hexia,et al.Characteristics of final condensate products in solid rocket engine[J].Journal of Rocket Propulsion,2024,50(03):90-101.[doi:10.3969/j.issn.1672-9374.2024.03.010]
固体火箭发动机中最终凝相产物特性分析
- Title:
- Characteristics of final condensate products in solid rocket engine
- 文章编号:
- 1672-9374(2024)03-0090-12
- Keywords:
- solid rocket motor; aluminized composite propellant; condensate products; particle size distribution; dynamic particle size measurement
- 分类号:
- V512
- 文献标志码:
- A
- 摘要:
- 铝颗粒的加入可以有效提高固体推进剂的能量特性,但也带来了两相流比冲损失、熔渣沉积和喷管烧蚀加剧等消极影响,因此,对固体火箭发动机最终凝相产物特性展开研究对评估和提升固体火箭发动机性能具有重要意义。以燃烧终产物为主要研究对象,搭建了基于粒度分析仪的高温高速颗粒特性动态测量系统,对AP/HTPB含铝复合推进剂开展了高温高压下固体火箭发动机试验研究,获得了排气羽流中燃烧终产物分布特性,包括燃烧终产物粒径、均值粒径及颗粒种类等随时间的变化规律,为全面了解凝相产物粒度分布特性提供试验和数据支撑。根据发动机燃烧室压力分布趋势,将固体火箭发动机的工作过程划分为3个阶段(阶段①~③),研究表明:阶段①排气羽流中固体颗粒包括黑火药和推进剂两种燃烧产物,黑火药的随机燃烧特性、燃烧室压力和温度的突升会共同影响该阶段的燃烧终产物分布特性; 阶段②燃烧稳定性最高,且该阶段不同时刻燃烧终产物粒径具有较为一致的分布特性,可采用特征模式描述阶段②燃烧终产物的粒径分布; 阶段③燃烧终产物粒径分布离散度小于阶段①,该阶段燃烧室压力和温度的突降会影响燃烧终产物分布特性; 燃烧室压力和温度突变会改变燃烧终产物模态、峰值粒径及均值粒径等分布特性,不同类型颗粒质量分数随发动机工作阶段的变化而变化。
- Abstract:
- The addition of aluminium particles can effectively improve the energy characteristics of solid propellants, but it also brings negative effects such as specific impulse loss, slag deposition, and intensified nozzle erosion. Therefore, conducting research on the characteristics of final condensed phase products in solid rocket motors is of great significance for evaluating and improving the performance of solid rocket engines. The final condensate products were taken as the main research object, and a dynamic measurement system for high-temperature and high-speed particle characteristics based on particle size analyser was built for experimental research on AP/HTPB aluminized composite propellant under the real working condition of solid rocket engine. The distribution characteristics of final condensate products in the exhaust plume, including the change laws of the particle size, average particle size and types of final condensate products were revealed in this paper. It provides experimental and data support for comprehensively understanding the size distribution characteristics of condensed products. The working process of solid rocket engine can be divided into three stages(stages ①~③)according to the pressure distribution in the combustion chamber. In stage ①, The research shows that the condensate products in the exhaust plume include the combustion products of powder explosive and propellant. The random combustion characteristics of powder explosive and the sudden rise of pressure in the combustion chamber will jointly affect the distribution characteristics of condensate products at this stage. The size distribution of condensate products has the highest stability in stage ②, and characteristic distribution can be applied to describe the size distribution of condensate products. The dispersion of size distribution of condensate products in stage ③ is smaller than that in stage ①, and a sudden drop of pressure in combustion chamber during this stage will affect the distribution characteristics of condensate products. Sudden changes in combustion chamber pressure and temperature can alter the distribution characteristics of condensate products modes, peak particle size, and mean particle size. Meanwhile, the mass fraction of different types of condensate products varies with the operating stage of the solid rocket engine.
参考文献/References:
[1] 董师颜,张兆良. 固体火箭发动机原理[M]. 北京: 北京理工大学出版社, 1996.
[2]张明, 梁彦, 唐庆明. 纳米铝粉在固体推进剂中的应用[J]. 火箭推进, 2006, 32(1): 35-39.
ZHANG M, LIANG Y, TANG Q M. Progress in the application of nano aluminum powder in solid propellants[J]. Journal of Rocket Propulsion, 2006, 32(1): 35-39.
[3]AO W, LIU P J, YANG W J. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant[J]. Acta Astronautica, 2016, 129: 147-153.
[4]LIU H, AO W, LIU P J, et al. Experimental investigation on the condensed combustion products of aluminized GAP-based propellants[J]. Aerospace Science and Technology, 2020, 97: 105595.
[5]LIU Z, LI S P, LIU M Y, et al. Experimental investigation of the combustion products in an aluminised solid propellant[J]. Acta Astronautica, 2017, 133: 136-144.
[6]胡松启, 王鹏飞, 刘凯, 等. 含石蜡燃料初步研究[J]. 火箭推进, 2011, 37(6): 43-46.
HU S Q, WANG P F, LIU K, et al. Pilot study on solid fuel containing paraffin[J]. Journal of Rocket Propulsion, 2011, 37(6): 43-46.
[7]LIU M Y, LIU Z, LI S P, et al. Characterization of the initial agglomerates of aluminized composite propellants[J]. Acta Astronautica, 2021, 188: 130-139.
[8]LIU M Y, YU W H, LI S P. Factors in condensate product particle size during aluminized propellant combustion[J]. AIAA Journal, 2023, 61(8): 3393-3403.
[9]MENGYING L, SHIPENG L, LIU Z, et al. Numerical simulation on the infrared characteristic of the jet plume of a solid rocket motor[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2017.
[10]凌江, 徐义华, 孙海俊, 等. 燃气喷射角度对含硼固体火箭超燃冲压发动机补燃室燃烧效率的影响[J]. 火箭推进, 2022, 48(1): 69-75.
LING J, XU Y H, SUN H J, et al. Effect of gas injection angle on combustion efficiency of secondary combustion chamber for solid rocket scramjet containing boron[J]. Journal of Rocket Propulsion, 2022, 48(1): 69-75.
[11]何国强, 王国辉, 蔡体敏, 等. 高过载条件下固体发动机内流场及绝热层冲蚀研究[J]. 固体火箭技术, 2001, 24(4): 4-8.
HE G Q, WANG G H, CAI T M, et al. Investigation on internal f low and insulator erosion of SRM under high acceleration[J]. Journal of Solid Rocket Technology, 2001, 24(4): 4-8.
[12]LI Z Y, WANG N F, SHI B L, et al. Effects of particle size on two-phase flow loss in aluminized solid rocket motors[J]. Acta Astronautica, 2019, 159: 33-40.
[13]BABUK V, VASIL'EV V A, POTEKHIN A N. Experimental investigation of agglomeration during combustion of aluminized solid propellants in an acceleration field[J]. Combustion, Explosion, and Shock Waves, 2009, 45: 32-39.
[14]ZHAO D, LI X Y. A review of acoustic dampers applied to combustion chambers in aerospace industry[J]. Progress in Aerospace Sciences, 2015, 74: 114-130.
[15]LIAW P, CHEN Y S, SHANG H M, et al. Particulate multi-phase flowfield calculation with combustion/breakup models for solid rocket motor[C]//30th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1994.
[16]HERMSEN R. Aluminum combustion efficiency in solid rocket motors[C]//19th Aerospace Sciences Meeting. Reston, Virginia: AIAA, 1981.
[17]MAJDALANI J, KATTA A, BARBER T A, et al. Characterization of particle trajectories in solid rocket motors[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: AIAA, 2013.
[18]SIPPEL T R, SON S F, GROVEN L J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles[J]. Combustion and Flame, 2014, 161(1): 311-321.
[19]JAYARAMAN K, CHAKRAVARTHY S R, SARATHI R. Quench collection of nano-aluminium agglomerates from combustion of sandwiches and propellants[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1941-1947.
[20]ANAND K V, ROY A, MULLA I, et al. Experimental data and model predictions of aluminium agglomeration in ammonium perchlorate-based composite propellants including plateau-burning formulations[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2139-2146.
[21]DOBBINS R A, STRAND L D. A comparison of two methods of measuring particle size of Al2O3 produced by a small rocket motor[J]. AIAA Journal, 1970, 8(9): 1544-1550.
[22]徐启. 固体火箭发动机羽流凝聚相颗粒分析研究[D]. 北京: 北京理工大学, 2016.
XU Q. Solid rocket motor plume condensed phase particle analysis research[D]. Beijing: Beijing Institute of Technology, 2016.
[23]SAMBAMURTHI J K. Al2O3 collection and sizing from solid rocket motor plumes[J]. Journal of Propulsion and Power, 1996, 12(3): 598-604.
[24]GIRATA J, MCGREGOR W. Particle sampling of solid rocket motor/SRM/exhausts in high-altitude test cells[C]//21st Aerospace Sciences Meeting. Reno, NV. Reston, Virginia: AIAA, 1983.
[25]MAURICE M S. Particle size distribution technique using conventional laser Doppler velocimetry measurements[J]. AIAA Journal, 1996, 34(6): 1209-1215.
[26]BALAKUMAR B J, ADRIAN R J. Experiments in fluids experimental methods and their applications to fluid flow[M]. Berlin: Springer-Verlag, 2003.
[27]EDWARDS T, HORTON K G, REDMAN D. Measurement of particulates in solid propellant rocket motors[D]. Monterey: Naval Postgraduate School, 1986.
[28]SAMBAMURTHI J K, PRICE E W, SIGMAN R K. Aluminum agglomeration in solid-propellant combustion[J]. AIAA Journal, 1984, 22(8): 1132-1138.
[29]LIU T K, PERNG H C, LUH S P, et al. Aluminum agglomeration in ammonium perchlorate/cyclotrimethylene trinitramine/aluminum/hydroxy-terminated polybutadiene propellant combustion[J]. Journal of Propulsion and Power, 1992, 8(6): 1177-1184.
[30]刘鑫, 刘佩进, 金秉宁, 等. 复合推进剂中铝燃烧实验研究[J]. 推进技术, 2016, 37(8): 1579-1585.
LIU X, LIU P J, JIN B N, et al. An experimental investigation of aluminum combustion in composite propellent[J]. Journal of Propulsion Technology, 2016, 37(8): 1579-1585.
[31]MANSER J R. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe[D]. Monterey: Naval Postgraduate School, 1986.
[32]POWERS J P. Automatic particle sizing from rocket motor holograms[EB/OL]. [2023-08-25]. https://xueshu.baidu.com/usercenter/paper/show?paperid=2fd780568096
f3613d224133804036b9&site=xueshu-se, 1992.
[33]MCCRORIE J D. Particle behavior in solid propellant rocket motors and plumes[D]. Monterey: Naval Postgraduate School, 1992.
[34]TRAINEAU J, KUENTZMANN P, PREVOST M, et al. Particle size distribution measurements in a subscale motor for the Ariane 5 solid rocket booster[C]//28th Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 1992.
[35]YOUNGBORG E D. Application of laser diffraction techniques to particle sizing in solid propellant rocket motors[D]. Monterey: Naval Postgraduate School, 1991.
[36]HOVLAND D L. Particle sizing in solid rocket motors[D]. Monterey: Naval Postgraduate School, 1989.
[37]LAREDO D, MCCRORIE J D, VAUGHN J K, et al. Motor and plume particle size measurements in solid propellant micromotors[J]. Journal of Propulsion and Power, 1994, 10(3): 410-418.
[38]周海清. 脉冲推力器点火过程数值模拟及尾焰检测技术研究[D]. 北京: 北京理工大学, 2005.
[39]LIU M Y. Analysis of agglomeration behaviors of aluminized composite propellants[J]. Case Studies in Thermal Engineering, 2023, 44: 102852.
相似文献/References:
[1]徐学文,牟俊林,任建存,等.固体火箭发动机喷管瞬态流场特性分析[J].火箭推进,2015,41(05):49.
XU Xuewen,MU Junlin,REN Jiancun,et al.The analyses of transient flow-field
characteristics in the nozzle of SRM[J].Journal of Rocket Propulsion,2015,41(03):49.
[2]宋亚飞,高 峰,杨小秋.来流马赫数对射流矢量喷管内流场影响的动态模拟[J].火箭推进,2011,37(06):38.
SONG Ya-fei,GAO Feng,YANG Xiao-qiu.Dynamic simulation for effect of incoming flow Mach number on internal flow field of fluidic thrust vectoring nozzle[J].Journal of Rocket Propulsion,2011,37(03):38.
[3]宋亚飞,高 峰,曾 华,等.射流推力矢量喷管中粒子运动轨迹的数值模拟[J].火箭推进,2011,37(02):48.
SONG Ya-fei,GAO Feng,ZENG Hua,et al.Numerical simulation of particle trajectory in fluidic thrust vector nozzle[J].Journal of Rocket Propulsion,2011,37(03):48.
[4]靳瑞斌,向红军.一种新的模拟固体火箭发动机射流铝颗粒燃烧的方法[J].火箭推进,2010,36(06):25.
JIN Rui-bin,XIANG Hong-jun.New method of numerical simulation of combustion aluminium droplet in exhaust plume for SRM[J].Journal of Rocket Propulsion,2010,36(03):25.
[5]艾春安,高利荣,吴安法.固体火箭发动机多层结构壳体的
导波频散特性分析[J].火箭推进,2008,34(05):16.
Ai Chun'an,Gao Lirong,Wu Anfa.Analysis of dispersive characteristics of
guided waves for multi-layered structure
of solid rocket motor shell[J].Journal of Rocket Propulsion,2008,34(03):16.
[6]王鹏,李旭昌,徐颖军,等.固体火箭发动机总体优化设计[J].火箭推进,2007,33(04):16.
Wang Peng,Li Xuchang,Xu Yingjun.The optimal design of solid rocket motors[J].Journal of Rocket Propulsion,2007,33(03):16.
[7]艾春安,李剑,王斌,等.环境温度对固体火箭发动机气密性检查影响分析[J].火箭推进,2006,32(03):8.
Ai Chunan,Li Jian,Wang Bin.Influence of ambient temperature on solid rocket motor airtight test[J].Journal of Rocket Propulsion,2006,32(03):8.
[8]李 媛,孙展鹏,周艳青,等.某固体火箭发动机药柱温度场有限元分析[J].火箭推进,2019,45(02):32.
LI Yuan,SUN Zhanpeng,ZHOU Yanqing,et al.Finite element analysis of grain temperature
field for a solid rocket motor[J].Journal of Rocket Propulsion,2019,45(03):32.
[9]严博燕,吕江彦,刘元敏.固体火箭发动机喷管扩张段壳体结构优化设计[J].火箭推进,2019,45(03):54.
YAN Boyan,LYU Jiangyan,LIU Yuanmin.Optimal design on solid rocket motor nozzle divergent cone[J].Journal of Rocket Propulsion,2019,45(03):54.
[10]孙 迪,马 亮,甘晓松,等.嵌金属丝两级药柱掺混燃烧下的内弹道计算[J].火箭推进,2019,45(03):59.
SUN Di,MA Liang,GAN Xiaosong,et al.Internal ballistics calculation under mixing combustion of two-stage grain with embedded wire[J].Journal of Rocket Propulsion,2019,45(03):59.
备注/Memo
收稿日期:2023- 11- 25修回日期:2024- 01- 17
基金项目:国家自然科学基金(22205107); 江苏省卓越博士后计划(2022BZ212); 进排气技术教育部重点实验室基金(CEPE2020012)
作者简介:刘梦莹(1994—),女,博士,讲师,研究领域为金属颗粒掺混燃烧特性。
通信作者:黄河峡(1989—),男,博士,副教授,研究领域为内流空气动力学。