航天推进技术研究院主办
ZHOU Zhifan,ZHANG Jin,WU Yinwei,et al.Thermal stress safety analysis of nuclear thermal propulsion reactor fuel elements[J].Journal of Rocket Propulsion,2024,50(04):83-93.[doi:10.3969/j.issn.1672-9374.2024.04.008]
核热推进反应堆燃料元件热工应力安全分析
- Title:
- Thermal stress safety analysis of nuclear thermal propulsion reactor fuel elements
- 文章编号:
- 1672-9374(2024)04-0083-11
- Keywords:
- nuclear thermal propulsion; fuel element; thermal stress; fluid-structure interaction; safety analysis
- 分类号:
- TL352.1
- 文献标志码:
- A
- 摘要:
- 核热推进采用的超高温气冷堆堆芯长期运行在高热流密度、大功率梯度、大温差、高速冷却剂冲刷的严苛服役条件下,其内部的六棱柱型燃料元件可能发生应力集中导致引发结构失效风险,影响核反应堆燃料元件的运行安全性能。为探索核热推进燃料元件的热工应力行为规律及热工安全边界,以火箭飞行用核引擎(nuclear engine for rocket vehicle applications,NERVA)型核热推进反应堆为对象,选取反应堆内部密排燃料组件基本单元,建立对称模型,针对堆内(U,Zr)C石墨基复合燃料元件开展高温高流速氢气推进模式下的流-热-应力行为研究,评估燃料元件的高温熔化与断裂失效风险。研究结果表明:核热推进反应堆运行工况下,燃料元件受自身冷却剂通道排布方式与连接管元件冷却作用影响导致内部热流分配不均; 径向大温差带来的热膨胀差异在轴向上积累是引发燃料元件结构断裂失效的主要原因; 综合分析燃料元件内部的温度-应力场分布情况与影响因素,可为核热推进系统的运行安全设计提供优化思路与参考依据。
- Abstract:
- In nuclear thermal propulsion, the very-high-temperature gas-cooled reactor core operates under challenging service conditions including high heat flux, steep power gradients, significant temperature difference, and intense coolant flow erosion. In this environment, there is a risk of structural failure due to stress concentration in the hexagonal fuel elements, which can potentially impact the safety performance of the nuclear reactor fuel elements. To explore the thermal stress behavior and thermal safety boundaries of nuclear thermal propulsion fuel elements, with a focus on NERVA-type nuclear thermal propulsion reactors, a symmetrical model is established using the basic unit of densely packed fuel components inside the reactor, which is conducted for(U, Zr)C graphite-based composite fuel elements within the reactor, under high-temperature, high-flow hydrogen propulsion conditions, evaluating the risk of high-temperature melting and structural failure. The research findings indicate that under the operating conditions of nuclear thermal propulsion reactors, fuel elements experience non-uniform internal heat distribution due to the arrangement of their coolant channels and the cooling effects of connecting pipe elements. The accumulation of radial temperature differences leading to different thermal expansion along the axial direction is the primary cause of structural failure in fuel elements. Combining the analysis of temperature-stress field distribution within the fuel elements and the factors influencing it, this research can provide optimization ideas and guidelines for the safety design of nuclear thermal propulsion systems.
参考文献/References:
[1] 廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[2]苏光辉, 章静, 王成龙. 核能在未来载人航天中的应用[J]. 载人航天, 2020, 26(1): 1-13.
SU G H, ZHANG J, WANG C L. Application of nuclear energy in future manned space flight[J]. Manned Spaceflight, 2020, 26(1): 1-13.
[3]朱安文, 刘磊, 马世俊, 等. 空间核动力在深空探测中的应用及发展综述[J]. 深空探测学报, 2017, 4(5): 397-404.
ZHU A W, LIU L, MA S J, et al. An overview of the use and development of nuclear power system in deep space exploration[J]. Journal of Deep Space Exploration, 2017, 4(5): 397-404.
[4]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[5]于远航. 核推进将迎来发展良机[J]. 太空探索, 2021(9): 3.
YU Y H. Nuclear propulsion will usher in a good opportunity for development[J]. Space Exploration, 2021(9): 3.
[6]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[7]TAUB J M. Review of fuel element development for nuclear rocket engines[Z]. 1975.
[8]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[9]张梦龙, 张悦, 王宝和. 空间核推进系统综述与展望[J]. 兵器装备工程学报, 2018, 39(9): 96-100.
ZHANG M L, ZHANG Y, WANG B H. Review and prospect of space nuclear propulsion system[J]. Journal of Ordnance Equipment Engineering, 2018, 39(9): 96-100.
[10]GABRIELLI R A, HERDRICH G. Review of nuclear thermal propulsion systems[J]. Progress in Aerospace Sciences, 2015, 79: 92-113.
[11]STEWART M, SCHNITZLER B G. A comparison of materials issues for cermet and graphite-based NTP fuels[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2013.
[12]LUTHER L L. Performance of(U, Zr)C-Graphite(Composite)and of(U, Zr)C(Carbide)fuel elements in the nuclear furnace 1 test reactor[R]. Los Alamos: Los Alamos Scientific Laboratory, 1973.
[13]WEBB J A, CHARIT I. Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels[J]. Journal of Nuclear Materials, 2012, 427(1/2/3): 87-94.
[14]STEWART M, SCHNITZLER B. Thermal hydraulics and structural analysis of the small nuclear rocket engine(SNRE)core[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[15]FITTJE J E, SCHNITZLER B G. Parametric analyses of a 75 kN thrust class composite fuel based NTR engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2014.
[16]DUAN Z M, ZHANG J, WU Y W, et al. Multi-physics coupling analysis on neutronics, thermal hydraulic and mechanics characteristics of a nuclear thermal propulsion reactor[J]. Nuclear Engineering and Design, 2022, 399: 112042.
[17]MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Reston, Virginia: AIAA, 1993.
[18]DURHAM F P. Nuclear engine definition study preliminary report[R]. LA5044-MS, 1972.
[19]SCHNITZLER B, BOROWSKI S. Neutronics models and analysis of the small nuclear rocket engine(SNRE)[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2007.
[20]韩梓超, 章静, 王明军, 等. 核热推进系统氢气物性及流动换热模型分析[J]. 原子能科学技术, 2022, 56(7): 1276-1284.
HAN Z C, ZHANG J, WANG M J, et al. Analysis of thermodynamic property, flow and heat transfer model of hydrogen in NTP system[J]. Atomic Energy Science and Technology, 2022, 56(7): 1276-1284.
[21]MATT K, DAN K. Full-core coupled neutronic, thermal-hydraulic, and thermo-mechanical analysis of low-enriched uranium nuclear thermal propulsion reactors[J]. Energies, 2022, 15(19): 7007.
[22]KATOH Y, VASUDEVAMURTHY G, NOZAWA T, et al. Properties of zirconium carbide for nuclear fuel applications[J]. Journal of Nuclear Materials, 2013, 441(1/2/3): 718-742.
相似文献/References:
[1]廖宏图.核热推进技术综述[J].火箭推进,2011,37(04):1.
LIAO Hong-tu.Overview of nuclear thermal propulsion technologies[J].Journal of Rocket Propulsion,2011,37(04):1.
[2]马晓秋,解家春.核热火箭发动机研制进展与关键技术[J].火箭推进,2024,50(04):1.[doi:10.3969/j.issn.1672-9374.2024.04.001]
MA Xiaoqiu,XIE Jiachun.Development progress and key technologies of nuclear thermal rocket engine[J].Journal of Rocket Propulsion,2024,50(04):1.[doi:10.3969/j.issn.1672-9374.2024.04.001]
备注/Memo
收稿日期:2023- 11- 30修回日期:2024- 01- 08
基金项目:中核集团青年英才项目; 中国科协青年托举人才工程
作者简介:周之帆(2001—),男,博士,研究领域为核热推进系统燃料组件流热力耦合仿真。