PDF下载 分享
[1]肖辉,郭靓,兰治科,等.失重和重力条件液态金属绕流管束对流传热特性对比[J].火箭推进,2024,50(04):103-109.[doi:10.3969/j.issn.1672-9374.2024.04.010]
 XIAO Hui,GUO Liang,LAN Zhike,et al.Comparison of convective heat transfer characteristics of liquid metals flowing across tube bundles between gravity and zero-gravity conditions[J].Journal of Rocket Propulsion,2024,50(04):103-109.[doi:10.3969/j.issn.1672-9374.2024.04.010]
点击复制

失重和重力条件液态金属绕流管束对流传热特性对比

参考文献/References:

[1] 廖宏图. 核推进的空间应用浅析[J]. 火箭推进, 2016, 42(3): 6-14.
LIAO H T. Preliminary application analysis of nuclear propulsions in space[J]. Journal of Rocket Propulsion, 2016, 42(3): 6-14.
[2]张泽, 薛翔, 王园丁, 等. 空间核动力推进技术研究展望[J]. 火箭推进, 2021, 47(5): 1-13.
ZHANG Z, XUE X, WANG Y D, et al. Prospect of space nuclear power propulsion technology[J]. Journal of Rocket Propulsion, 2021, 47(5): 1-13.
[3]田立成, 王小永, 张天平. 空间电推进应用及技术发展趋势[J]. 火箭推进, 2015, 41(3): 7-14.
TIAN L C, WANG X Y, ZHANG T P. Application and development trend of space electric propulsion technology[J]. Journal of Rocket Propulsion, 2015, 41(3): 7-14.
[4]BENOIT H, SPREAFICO L, GAUTHIER D, et al. Review of heat transfer fluids in tube-receivers used in concentrating solar thermal systems: properties and heat transfer coefficients[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 298-315.
[5]PACIO J, VAN TICHELEN K, ECKERT S, et al. Advanced thermal-hydraulic experiments and instrumentation for heavy liquid metal reactors[J]. Nuclear Engineering and Design, 2022, 399: 112010.
[6]吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识, 2018, 30(4): 35-39.
WU Y C. Research progress and applications prospect of lead-based reactor[J]. Modern Physics, 2018, 30(4): 35-39.
[7]SHEN C, LIU L M, XU Z Y, et al. Influence of helix angle on flow and heat transfer characteristics of lead-bismuth flow in helical-coiled tube bundles[J]. Annals of Nuclear Energy, 2023, 180: 109483.
[8]MANGRULKAR C K, DHOBLE A S, DESHMUKH A R, et al. Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow[J]. Applied Thermal Engineering, 2017, 110: 521-538.
[9]NUCLEAR-ENERGY-AGENCY. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies[M]. Paris: OECD Publishing, 2015.
[10]吕科锋. 液态铅铋合金在带统丝棒束组件内热工水力行为研究[D]. 合肥: 中国科学技术大学, 2016.
LYU K F. Study on the thermal-hydraulic behaviors of a wire-wrapped rod bundle cooled with lead bismuth eutectic[D]. Hefei: University of Science and Technology of China, 2016.
[11]ZHANG D, ZHANG H C, LI Z E, et al. Investigation on entropy generation and flow characteristics of 7-pin sodium cooled wrapped-wire fuel bundle[Z]. 2022.
[12]张冬, 张昊春, 王琦, 等. 基于熵产分析的铅-铋冷却带绕丝燃料棒束热工水力特性研究[J]. 核动力工程, 2022, 43(S2): 125-130.
[13]RICKARD C L, DWYER O E, DROPKIN D. Heat-transfer rates to cross-flowing mercury in a staggered tube bank(II)[J]. Journal of Fluids Engineering, 1958, 80(3): 646-652.
[14]DWYER O. Recent developments in liquid-metal heat transfer[Z]. 1966.
[15]赵后剑, 谢箫阳, 高伟凯, 等. 液态铅铋合金横掠管束对流换热数值计算[J]. 工程热物理学报, 2021, 42(7): 1837-1843.
ZHAO H J, XIE X Y, GAO W K, et al. Numerical simulation of liquid lead-bismuth eutectic cross flow heat transfer over tube bundles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1837-1843.
[16]XIE X Y, ZHAO H J, LI X W, et al. Numerical investigation on heat transfer characteristics of liquid metal cross flow over tube bundles[J]. Annals of Nuclear Energy, 2023, 180: 109465.
[17]YANG Y P, LI Y, WANG C L, et al. Parametric sensitivity analysis of liquid metal helical coil once-through tube steam generator[J]. Nuclear Engineering and Design, 2021, 383: 111427.
[18]杨宇鹏, 王成龙, 张大林, 等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术, 2021, 55(7): 1288-1295.
YANG Y P, WANG C L, ZHANG D L, et al. Numerical study of liquid metal helical coil once-through tube steam generator[J]. Atomic Energy Science and Technology, 2021, 55(7): 1288-1295.
[19]沈聪, 刘茂龙, 刘利民, 等. 铅铋螺旋管壳侧流动传热数值模拟研究[J]. 核动力工程, 2022, 43(S2): 13-18.
[20]ROELOFS F. Thermal hydraulics aspects of liquid metal cooled nuclear reactors[M]. [S.l.]: Woodhead Publishing, 2019.
[21]刘伟, 肖辉. 基于增强协同与减少耗散的对流传热强化理论研究[J]. 中国科学(技术科学), 2021, 51(10): 1166-1177.
LIU W, XIAO H. Theoretical study on enhancing convective heat transfer based on strengthening synergy and reducing dissipation[J]. Scientia Sinica(Technologica), 2021, 51(10): 1166-1177.
[22]XIAO H, DONG Z M, LIU Z C, et al. Heat transfer performance and flow characteristics of solar air heaters with inclined trapezoidal vortex generators[J]. Applied Thermal Engineering, 2020, 179: 115484.
[23]SHAMS A, DE SANTIS A, KOLOSZAR L, et al. Status and perspectives of turbulent heat transfer modelling in low-Prandtl number fluids[J]. Nuclear Engineering and Design, 2019, 353(C): 110220.
[24]CHENG X, TAK N I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393.
[25]HOLMAN J. Heat transfer[M]. 10th ed. [S.l.]: [s.n.], 2010.

备注/Memo

收稿日期:2023- 04- 29修回日期:2023- 09- 24
基金项目:国家自然科学基金联合基金(U1967203); 四川省自然科学基金(2024NSFC1361)
作者简介:肖 辉(1993—),男,博士,助理研究员,研究领域为自然循环强化及多场协同调控。

更新日期/Last Update: 1900-01-01