航天推进技术研究院主办
HE Xueqing,LI Yaoyang.Thermal cycle selection and parameter optimization of nuclear thermal engine system[J].Journal of Rocket Propulsion,2024,50(04):117-125.[doi:10.3969/j.issn.1672-9374.2024.04.012]
核热火箭发动机系统热力循环选型及参数优化
- Title:
- Thermal cycle selection and parameter optimization of nuclear thermal engine system
- 文章编号:
- 1672-9374(2024)04-0117-09
- Keywords:
- nuclear thermal rocket engine system; thermal cycle; optimization and design of system parameters; genetic algorithm
- 分类号:
- V11
- 文献标志码:
- A
- 摘要:
- 针对核热火箭发动机系统方案展开深入研究,提出了3种液体火箭发动机系统循环选型和3种系统流路设计方案。以高比冲和经济性为优化目标进行系统热力循环选型和系统参数优化设计,最终选择了一种基于带驱动元件金属陶瓷(CERMET)快堆的闭式膨胀循环高性能系统方案。采用遗传算法进行该优化方案下系统参数最优化分析,结合工程实际最终得到室压5 MPa,涡轮前温度400 K,比冲大于900 s的优化设计系统方案,并对相关组合件理论特性进行分析,提出未来组件优化方向,为后续核热火箭发动机设计提供基础。
- Abstract:
- Based on the further research of nuclear thermal rocket engine system, three types of thermal cycle selection and flow path design of liquid rocket engines have been proposed. Aiming to obtain the high specific impulse and economy, a closed-expansion-cycle based on CERMET with a driver was finally selected. The genetic optimization algorithm was adopted to optimize the engine system. Combined with the engineering practice, the final scheme is obtained with a chamber pressure of 5 MPa, a turbine inlet temperature of 400 K and a specific impulse greater than 900 s. In addition, the theoretical characteristics of related components are analyzed and the future component optimization direction is proposed, which provides the basis for the subsequent design of nuclear thermal rocket engine.
参考文献/References:
[1] ALTSEIMER J H, MADER G F, STEWART J J. Operating characteristics and requirements for the NERVA flight engine[J]. Journal of Spacecraft and Rockets, 1971, 8(7): 766-773.
[2]陈彦舟. 美国核动力推进发动机最新发展概览[C]//中国核学会2021年学术年会. [S.l.]: [s.n.], 2021.
[3]廖宏图. 核热推进技术综述[J]. 火箭推进, 2011, 37(4): 1-11.
LIAO H T. Overview of nuclear thermal propulsion technologies[J]. Journal of Rocket Propulsion, 2011, 37(4): 1-11.
[4]戴进池, 王志远. 俄罗斯空间核动力技术的发展[J]. 国防科技, 2001(17): 10-11.
DAI J C, WANG Z Y. The development of russian space nuclear power technology[J]. Defense Technology Review, 2001(17): 10-11.
[5]解家春, 霍红磊, 苏著亭, 等. 核热推进技术发展综述[J]. 深空探测学报, 2017, 4(5): 417-429.
XIE J C, HUO H L, SU Z T, et al. Review of nuclear thermal propulsion technology development[J]. Journal of Deep Space Exploration, 2017, 4(5): 417-429.
[6]杭观荣, 洪鑫, 康小录. 国外空间推进技术现状和发展趋势[J]. 火箭推进, 2013, 39(5): 7-15.
HANG G R, HONG X, KANG X L. Current status and development trend of space propulsion technologies abroad[J]. Journal of Rocket Propulsion, 2013, 39(5): 7-15.
[7]苏著亭, 杨继材, 柯国土. 空间核动力[M]. 上海: 上海交通大学出版社, 2016: 11-58.
[8]WALTON L, ALES M. SNTP program fuel element design[C]//29th Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 1993.
[9]CORRINGTON L C. The nuclear rocket program: Its status and plans[J]. Journal of Spacecraft and Rockets, 1969, 6(4): 465-470.
[10]RICE C M, ARNOLD W H. Recent NERVA technology development[J]. Journal of Spacecraft and Rockets, 1969, 6(5): 565-569.
[11]GRIMM T, HAMKE R. NERVA derived engine and operations concept[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virginia: AIAA, 2006.
[12]BENNETT G. Space nuclear power: opening the final frontier[C]//4th International Energy Conversion Engineering Conference and Exhibit(IECEC). Reston, Virigina: AIAA, 2006.
[13]BOROWSKI S K, MCCURDY D R, PACKARD T W. Nuclear thermal rocket(NTR)propulsion: A proven game-changing technology for future human exploration missions[R]. E-18199, 2012.
[14]VADIM Z, VLADIMIR P. Russian nuclear rocket engine design for Mars exploration[J]. Tsinghua Science and Technology, 2007, 12(3): 256-260.
[15]MIKE H, MELISSA V D, TOM G, et al. The case of nuclear propulsion[Z]. 2003.
[16]吉宇, 毛晨瑞, 孙俊, 等. 核热火箭发动机系统循环方案分析与设计[J]. 火箭推进, 2022, 48(1): 14-21.
JI Y, MAO C R, SUN J, et al. Analysis and design of system cycle for nuclear thermal rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(1): 14-21.
[17]王戈, 郎明刚, 李家文, 等. 核热火箭发动机循环方案对比分析[J]. 载人航天, 2019, 25(2): 196-201.
WANG G, LANG M G, LI J W, et al. Comparison and analysis of cycle schemes in nuclear thermal rocket engine[J]. Manned Spaceflight, 2019, 25(2): 196-201.
[18]冯致远, 张昊春, 吉宇, 等. 航天器核动力推进系统热力学性能研究[J]. 载人航天, 2016, 22(6): 797-804.
FENG Z Y, ZHANG H C, JI Y, et al. Study on thermodynamic performance of nuclear power propulsion system in spacecraft[J]. Manned Spaceflight, 2016, 22(6): 797-804.
[19]王浩泽, 左安军, 霍红磊, 等. 110 kN核热火箭发动机系统方案选取与参数优化研究[J]. 原子能科学技术, 2019, 53(1): 30-37.
WANG H Z, ZUO A J, HUO H L, et al. System design selection and parametric optimization analysis of 110 kN nuclear thermal rocket engine[J]. Atomic Energy Science and Technology, 2019, 53(1): 30-37.
[20]房玉良,王成龙,田文喜,等. 100 kN核热推进系统方案热工设计分析[C]//第六届空天动力联合会议. 成都: [s.n.], 2022.
[21]FITTJE J E, BOROWOSKI S, SCHNITZLER B G. Revised point of departure design options for nuclear thermal propulsion[C]//AIAA SPACE 2015 Conference and Exposition. Reston, Virginia: AIAA, 2015.
相似文献/References:
[1]南向军,李斌,何国强.RBCC发动机火箭及火箭冲压模态热力循环分析[J].火箭推进,2023,49(05):39.
NAN Xiangjun,LI Bin,HE Guoqiang.Thermodynamic cycle analysis of RBCC engine rocket and rocket-scramjet mode[J].Journal of Rocket Propulsion,2023,49(04):39.
备注/Memo
收稿日期:2023- 07- 31修回日期:2024- 01- 25
基金项目:民用航天“十三五”技术预先研究项目(D010304)
作者简介:何雪晴(1994—),女,硕士,工程师,研究领域为液体火箭发动机系统设计。