PDF下载 分享
[1]费腾,徐冉,赵鹏宇,等.离子型短点火延迟自燃液体推进剂研究进展[J].火箭推进,2024,50(05):33-43.[doi:10.3969/j.issn.1672-9374.2024.05.003]
 FEI Teng,XU Ran,ZHAO Pengyu,et al.Research progress on hypergolic ionic liquid propellant with short ignition delay time[J].Journal of Rocket Propulsion,2024,50(05):33-43.[doi:10.3969/j.issn.1672-9374.2024.05.003]
点击复制

离子型短点火延迟自燃液体推进剂研究进展

参考文献/References:

[1] 李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.
[2]CAISSO P, SOUCHIER A, ROTHMUND C, et al. A liquid propulsion panorama[J]. Acta Astronautica, 2009, 65(11): 1723-1737.
[3]符全军. 液体推进剂的现状及未来发展趋势[J]. 火箭推进, 2004, 30(1): 1-6.
FU Q J. Development status and trends of liquid propellant[J]. Journal of Rocket Propulsion, 2004, 30(1): 1-6.
[4]谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308.
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308.
[5]KANG H, PARK S, PARK Y, et al. Ignition-delay measurement for drop test with hypergolic propellants: reactive fuels and hydrogen peroxide[J]. Combustion and Flame, 2020, 217: 306-313.
[6]DURGAPAL U C, VENUGOPAL V K. Hypergolic ignition of rocket propellants with nitric acid containing dissolved nitrogen tetroxide[J]. AIAA Journal, 1974, 12(11): 1611-1612.
[7]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[8]贺芳, 方涛, 李亚裕, 等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[9]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[10]焦念明, 张延强. 离子液体自燃推进剂的研究进展[J]. 工程研究, 2022, 14(6): 483-498.
JIAO N M, ZHANG Y Q. Research on hypergolic ionic liquid propellants[J]. Journal of Engineering Studies, 2022, 14(6): 483-498.
[11]SCHNEIDER S, HAWKINS T, ROSANDER M, et al. Ionic liquids as hypergolic fuels[J]. Energy & Fuels, 2008, 22(4): 2871-2872.
[12]ZHANG Q H, SHREEVE J M. Ionic liquid propellants: Future fuels for space propulsion[J]. Chemistry, 2013, 19(46): 15446-15451.
[13]ZHANG Q H, SHREEVE J M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574.
[14]FEI T, ZHANG Y, DU Y, et al. Review on hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2016, 24(10): 1017-1028.
[15]ZHANG Y Q, GAO H X, JOO Y H, et al. Ionic liquids as hypergolic fuels[J]. Angewandte Chemie, 2011, 50(41): 9554-9562.
[16]张光全. 离子液体在含能材料领域的应用进展[J]. 含能材料, 2012, 20(2): 240-247.
ZHANG G Q. Application progress of ionic liquid in energetic materials[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 240-247.
[17]DALLAS J A, RAVAL S, ALVAREZ GAITAN J P, et al. The environmental impact of emissions from space launches: A comprehensive review[J]. Journal of Cleaner Production, 2020, 255: 120209.
[18]WANG M, WANG Z Y, ZHANG J C, et al. Synthesis and properties of bio-renewable ionic salts derived from theophylline as green hypergolic fuels[J]. Journal of Molecular Liquids, 2023, 372: 121207.
[19]BISWAS P, WANG Y J, HAGEN E, et al. Electrochemical modulation of the flammability of ionic liquid fuels[J]. Journal of the American Chemical Society, 2023, 145(30): 16318-16323.
[20]MOTA F A S, LIU M Y, MOHSEN A A A, et al. Development of polyamine/alkanolamine-based hypergolics with hydrogen peroxide: A new route to N-methylimidazole with MDEA as a promising green fuel[J]. Fuel, 2024, 357: 129798.
[21]WANG Y J, WANG X Y, XU H, et al. One-dimensional copper bromide based inorganic-organic hybrids as fuels for hypergolic bipropellants with hydrogen peroxide as oxidizer[J]. Chemical Engineering Journal, 2023, 455: 140587.
[22]SMIGLAK M, METLEN A, ROGERS R D. The second evolution of ionic liquids: From solvents and separations to advanced materials: energetic examples from the ionic liquid cookbook[J]. Accounts of Chemical Research, 2007, 40(11): 1182-1192.
[23]MCCRARY P D, CHATEL G, ALANIZ S A, et al. Evaluating ionic liquids as hypergolic fuels: Exploring reactivity from molecular structure[J]. Energy & Fuels, 2014, 28(5): 3460-3473.
[24]JIAO N M, YUAN Y Y, YAO Y, et al. Strained carbocycle based hypergolic ionic fuels with the improved energy capacity[J]. Fuel Processing Technology, 2022, 231: 107248.
[25]ZHANG Y Q, GAO H X, GUO Y, et al. Hypergolic N, N-dimethylhydrazinium ionic liquids[J]. Chemistry, 2010, 16(10): 3114-3120.
[26]HE L, TAO G H, PARRISH D A, et al. Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels[J]. Chemistry, 2010, 16(19): 5736-5743.
[27]费腾, 蔡会武, 李志敏, 等. 双(咪唑)硼烷类自燃离子液体的合成、表征及性质[J]. 含能材料, 2015, 23(10): 952-958.
FEI T, CAI H W, LI Z M, et al. Synthesis, characterization and properties of bis(imidazole)dihydroboronium hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 952-958.
[28]JOO Y H, GAO H X, ZHANG Y Q, et al. Inorganic or organic azide-containing hypergolic ionic liquids[J]. Inorganic Chemistry, 2010, 49(7): 3282-3288.
[29]GAO H X, JOO Y H, TWAMLEY B, et al. Hypergolic ionic liquids with the 2, 2-dialkyltriazanium cation[J]. Angewandte Chemie, 2009, 48(15): 2792-2795.
[30]SUN C G, TANG S K, ZHANG X W. Role of cation structures for energetic performance of hypergolic ionic liquids[J]. Energy & Fuels, 2017, 31(9): 10055-10059.
[31]ZHANG Y Q, SHREEVE J M. Dicyanoborate-based ionic liquids as hypergolic fluids[J]. Angewandte Chemie, 2011, 50(4): 935-937.
[32]LI S Q, GAO H X, SHREEVE J M. Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times[J]. Angewandte Chemie, 2014, 53(11): 2969-2972.
[33]CHAND D, ZHANG J H, SHREEVE J M. Borohydride ionic liquids as hypergolic fuels: A quest for improved stability[J]. Chemistry, 2015, 21(38): 13297-13301.
[34]ZHANG Q H, YIN P, ZHANG J H, et al. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels[J]. Chemistry, 2014, 20(23): 6909-6914.
[35]LIU T L, QI X J, HUANG S, et al. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels[J]. Chemical Communications, 2016, 52(10): 2031-2034.
[36]翁欣妍, 杜宗罡, 于君, 等. 含BH3(CN)BH2(CN)-阴离子的离子液体自着火过程的实验研究[J]. 含能材料, 2018, 26(7): 557-564.
WENG X Y, DU Z G, YU J, et al. Experimental study of hypergolic process of ionic liquids with BH3(CN)BH2(CN)-anion[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 557-564.
[37]ZHANG W Q, QI X J, HUANG S, et al. Bis(borano)hypophosphite-based ionic liquids as ultrafast-igniting hypergolic fuels[J]. Journal of Materials Chemistry A, 2016, 4(23): 8978-8982.
[38]HUANG S, QI X J, LIU T L, et al. Towards safer rocket fuels: Hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives[J]. Chemistry-A European Journal, 2016, 22(29): 10187-10193.
[39]LI X Y, HUO H Y, LI H B, et al. Cyanotetrazolylborohydride(CTB)anion-based ionic liquids with low viscosity and high energy capacity as ultrafast-igniting hypergolic fuels[J]. Chemical Communications, 2017, 53(59): 8300-8303.
[40]JIAO N M, ZHANG Y Q, LIU L, et al. Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times[J]. Journal of Materials Chemistry A, 2017, 5(26): 13341-13346.
[41]ZHANG S G, ZHANG J H, ZHANG Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833.
[42]ZHOU T, GUI C M, SUN L G, et al. Energy applications of ionic liquids: Recent developments and future prospects[J]. Chemical Reviews, 2023, 123(21): 12170-12253.
[43]邓友全. 离子液体: 性质、制备与应用[M]. 北京: 中国石化出版社, 2006.
[44]SEBASTIAO E, COOK C, HU A G, et al. Recent developments in the field of energetic ionic liquids[J]. Journal of Materials Chemistry A, 2014, 2(22): 8153-8173.
[45]RANKE J, STOLTE S, STÖRMANN R, et al. Design of sustainable chemical products: The example of ionic liquids[J]. Chemical Reviews, 2007, 107(6): 2183-2206.
[46]LEE J W, SHIN J Y, CHUN Y S, et al. Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids[J]. Accounts of Chemical Research, 2010, 43(7): 985-994.
[47]GAO H X, SHREEVE J M. Ionic liquid solubilized boranes as hypergolic fluids[J]. Journal of Materials Chemistry, 2012, 22(22): 11022-11024.
[48]MCCRARY P D, BARBER P S, KELLEY S P, et al. Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents[J]. Inorganic Chemistry, 2014, 53(9): 4770-4776.
[49]PIALAT A, KITOS A A, WITKOWSKI T G, et al. Achieving short ignition delay and high specific impulse with cyanoborohydride-based hypergolic ionic liquids[J]. New Journal of Chemistry, 2022, 46(44): 21212-21220.
[50]ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[51]MCCRARY P D, BEASLEY P A, COJOCARU O A, et al. Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles[J]. Chemical Communications, 2012, 48(36): 4311-4313.
[52]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022, 48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[53]高鹤, 李少龙, 严浩, 等. 双模式离子液体推进剂的分解特性与热试车实验研究[J]. 空间控制技术与应用, 2021, 47(4): 41-47.
GAO H, LI S L, YAN H, et al. The decomposition characteristics and the hot fire test of a dual-mode ionic liquid propellant[J]. Aerospace Control and Application, 2021, 47(4): 41-47.

相似文献/References:

[1]许 宏,袁仁学,孙 波,等.复合加强型推进剂包装容器设计与验证[J].火箭推进,2015,41(02):87.
 XU Hong,YUAN Ren-xue,SUN Bo,et al.Design and verification of a reinforced integrated vessel for liquid propellants[J].Journal of Rocket Propulsion,2015,41(05):87.
[2]王爱玲,梁兴国.液体推进剂火灾爆炸事故类型分析及其预防[J].火箭推进,2009,35(02):58.
 Wang Ailing,Liang Xingguo.Analysis of fire and explosion accidents of liquid propellants and the prevention[J].Journal of Rocket Propulsion,2009,35(05):58.
[3]符全军.液体推进剂的现状及未来发展趋势[J].火箭推进,2004,(01):1.
[4]李新其,刘祥萱,李红霞,等.液体推进剂贮运可靠性模糊故障树方法研究[J].火箭推进,2004,(05):31.
 Li Xinqi,Liu Xiangxuan,Li Hongxia.Fuzzy Fault Tree Method of the Liquid Propellant Store and Transport Security Estimate and Forecast[J].Journal of Rocket Propulsion,2004,(05):31.
[5]陈军,丁博深,段燕.氢/氧火箭发动机试验自动紧急关机程序设计[J].火箭推进,2016,42(02):69.
 CHEN Jun,DING Boshen,DUAN Yan.Design of automatic emergency cut-off program in LH2/LOX engine test[J].Journal of Rocket Propulsion,2016,42(05):69.
[6]王菊香,瞿 军,邢志娜,等.近红外光谱技术在推进剂质量检测中的应用[J].火箭推进,2018,44(02):82.
 WANG Juxiang,QU Jun,XING Zhina,et al.Application of NIRS analysis technology in liquid propellant quality detection[J].Journal of Rocket Propulsion,2018,44(05):82.

备注/Memo

收稿日期:2024- 01- 18修回日期:2024- 05- 02
基金项目:国家自然科学基金(22205021)
作者简介:费 腾(1990—),男,博士,研究领域为液体推进剂和高能量密度化合物。

更新日期/Last Update: 1900-01-01