航天推进技术研究院主办
FEI Teng,XU Ran,ZHAO Pengyu,et al.Research progress on hypergolic ionic liquid propellant with short ignition delay time[J].Journal of Rocket Propulsion,2024,50(05):33-43.[doi:10.3969/j.issn.1672-9374.2024.05.003]
离子型短点火延迟自燃液体推进剂研究进展
- Title:
- Research progress on hypergolic ionic liquid propellant with short ignition delay time
- 文章编号:
- 1672-9374(2024)05-0033-11
- Keywords:
- liquid propellant; hypergolic ionic liquid; ignition delay time; organic synthesis; compounded system
- 分类号:
- TJ55
- 文献标志码:
- A
- 摘要:
- 自燃液体推进剂不仅可简化液体火箭发动机设计,而且可实现多次无故障点火,并提高动力设备的运行安全性,是航天推进技术领域的研究重点之一。降低自燃推进剂点火延迟时间,不仅可提高发动机启动过程可靠性及推进剂燃烧效率,也可避免推进剂积存在燃烧室内导致启动时产生过高的压力峰或激发剧烈振荡燃烧而发生爆炸。自燃离子液体(HILs)因蒸汽压低、物化性质可调节、毒性小等优点,有望弥补或替代肼类物质作为自燃液体推进剂燃料。以点火延迟时间小于5 ms的燃烧性能特点为核心,对短点火延迟时间HILs以及复配体系的合成制备方法进行了综述。针对自燃推进系统提出的要求,尽管现有短点火延迟的HILs或复配体系有成为未来绿色自燃推进剂燃料的潜质,但存在黏度高、燃烧产物复杂、比冲低等制约性问题。因此,还需在性能提升、工程适用性、系统匹配性等方面开展理论和试验研究,以加快HILs或复配体系早日走向工程应用。
- Abstract:
- Hypergolic liquid propellant can not only simplify the design of liquid rocket engine, but also realize multiple trouble-free ignitions and improve the operation safety of launch vehicles, which is one of the research focuses in the field of aerospace propulsion technology. Reducing the ignition delay time of hypergolic propellant can not only improve the reliability of start-up process of engine and the combustion efficiency of propellant, but also avoid the accumulation of propellant in the combustion chamber, which will cause excessive pressure peak or trigger violent oscillation combustion and explosion. Due to the advantages of low vapor pressure, adjustable physicochemical properties and low toxicity, hypergolic ionic liquids(HILs)are expected to compensate or replace hydrazine as the fuel of liquid propellant. Based on the combustion performance of ignition delay time less than 5 ms, the synthesis and preparation methods of HILs and compounded system are reviewed. According to the requirements of hypergolic combustion propulsion system, although the existing HILs or compounded system with short ignition delay have the potential to become the future green hypergolic propellant fuel, there are some constraint problems such as high viscosity, complex combustion products and low specific impulse. Therefore, in order to accelerate the application of HILs or compounded system in engineering, it is necessary to carry out theoretical and experimental research on the aspects of performance improvement, engineering applicability, system matching, etc..
参考文献/References:
[1] 李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.
[2]CAISSO P, SOUCHIER A, ROTHMUND C, et al. A liquid propulsion panorama[J]. Acta Astronautica, 2009, 65(11): 1723-1737.
[3]符全军. 液体推进剂的现状及未来发展趋势[J]. 火箭推进, 2004, 30(1): 1-6.
FU Q J. Development status and trends of liquid propellant[J]. Journal of Rocket Propulsion, 2004, 30(1): 1-6.
[4]谭永华. 大推力液体火箭发动机研究[J]. 宇航学报, 2013, 34(10): 1303-1308.
TAN Y H. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308.
[5]KANG H, PARK S, PARK Y, et al. Ignition-delay measurement for drop test with hypergolic propellants: reactive fuels and hydrogen peroxide[J]. Combustion and Flame, 2020, 217: 306-313.
[6]DURGAPAL U C, VENUGOPAL V K. Hypergolic ignition of rocket propellants with nitric acid containing dissolved nitrogen tetroxide[J]. AIAA Journal, 1974, 12(11): 1611-1612.
[7]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[8]贺芳, 方涛, 李亚裕, 等. 新型绿色液体推进剂研究进展[J]. 火炸药学报, 2006, 29(4): 54-57.
HE F, FANG T, LI Y Y, et al. Development of green liquid propellants[J]. Chinese Journal of Explosives & Propellants, 2006, 29(4): 54-57.
[9]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[10]焦念明, 张延强. 离子液体自燃推进剂的研究进展[J]. 工程研究, 2022, 14(6): 483-498.
JIAO N M, ZHANG Y Q. Research on hypergolic ionic liquid propellants[J]. Journal of Engineering Studies, 2022, 14(6): 483-498.
[11]SCHNEIDER S, HAWKINS T, ROSANDER M, et al. Ionic liquids as hypergolic fuels[J]. Energy & Fuels, 2008, 22(4): 2871-2872.
[12]ZHANG Q H, SHREEVE J M. Ionic liquid propellants: Future fuels for space propulsion[J]. Chemistry, 2013, 19(46): 15446-15451.
[13]ZHANG Q H, SHREEVE J M. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry[J]. Chemical Reviews, 2014, 114(20): 10527-10574.
[14]FEI T, ZHANG Y, DU Y, et al. Review on hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2016, 24(10): 1017-1028.
[15]ZHANG Y Q, GAO H X, JOO Y H, et al. Ionic liquids as hypergolic fuels[J]. Angewandte Chemie, 2011, 50(41): 9554-9562.
[16]张光全. 离子液体在含能材料领域的应用进展[J]. 含能材料, 2012, 20(2): 240-247.
ZHANG G Q. Application progress of ionic liquid in energetic materials[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 240-247.
[17]DALLAS J A, RAVAL S, ALVAREZ GAITAN J P, et al. The environmental impact of emissions from space launches: A comprehensive review[J]. Journal of Cleaner Production, 2020, 255: 120209.
[18]WANG M, WANG Z Y, ZHANG J C, et al. Synthesis and properties of bio-renewable ionic salts derived from theophylline as green hypergolic fuels[J]. Journal of Molecular Liquids, 2023, 372: 121207.
[19]BISWAS P, WANG Y J, HAGEN E, et al. Electrochemical modulation of the flammability of ionic liquid fuels[J]. Journal of the American Chemical Society, 2023, 145(30): 16318-16323.
[20]MOTA F A S, LIU M Y, MOHSEN A A A, et al. Development of polyamine/alkanolamine-based hypergolics with hydrogen peroxide: A new route to N-methylimidazole with MDEA as a promising green fuel[J]. Fuel, 2024, 357: 129798.
[21]WANG Y J, WANG X Y, XU H, et al. One-dimensional copper bromide based inorganic-organic hybrids as fuels for hypergolic bipropellants with hydrogen peroxide as oxidizer[J]. Chemical Engineering Journal, 2023, 455: 140587.
[22]SMIGLAK M, METLEN A, ROGERS R D. The second evolution of ionic liquids: From solvents and separations to advanced materials: energetic examples from the ionic liquid cookbook[J]. Accounts of Chemical Research, 2007, 40(11): 1182-1192.
[23]MCCRARY P D, CHATEL G, ALANIZ S A, et al. Evaluating ionic liquids as hypergolic fuels: Exploring reactivity from molecular structure[J]. Energy & Fuels, 2014, 28(5): 3460-3473.
[24]JIAO N M, YUAN Y Y, YAO Y, et al. Strained carbocycle based hypergolic ionic fuels with the improved energy capacity[J]. Fuel Processing Technology, 2022, 231: 107248.
[25]ZHANG Y Q, GAO H X, GUO Y, et al. Hypergolic N, N-dimethylhydrazinium ionic liquids[J]. Chemistry, 2010, 16(10): 3114-3120.
[26]HE L, TAO G H, PARRISH D A, et al. Nitrocyanamide-based ionic liquids and their potential applications as hypergolic fuels[J]. Chemistry, 2010, 16(19): 5736-5743.
[27]费腾, 蔡会武, 李志敏, 等. 双(咪唑)硼烷类自燃离子液体的合成、表征及性质[J]. 含能材料, 2015, 23(10): 952-958.
FEI T, CAI H W, LI Z M, et al. Synthesis, characterization and properties of bis(imidazole)dihydroboronium hypergolic ionic liquids[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 952-958.
[28]JOO Y H, GAO H X, ZHANG Y Q, et al. Inorganic or organic azide-containing hypergolic ionic liquids[J]. Inorganic Chemistry, 2010, 49(7): 3282-3288.
[29]GAO H X, JOO Y H, TWAMLEY B, et al. Hypergolic ionic liquids with the 2, 2-dialkyltriazanium cation[J]. Angewandte Chemie, 2009, 48(15): 2792-2795.
[30]SUN C G, TANG S K, ZHANG X W. Role of cation structures for energetic performance of hypergolic ionic liquids[J]. Energy & Fuels, 2017, 31(9): 10055-10059.
[31]ZHANG Y Q, SHREEVE J M. Dicyanoborate-based ionic liquids as hypergolic fluids[J]. Angewandte Chemie, 2011, 50(4): 935-937.
[32]LI S Q, GAO H X, SHREEVE J M. Borohydride ionic liquids and borane/ionic-liquid solutions as hypergolic fuels with superior low ignition-delay times[J]. Angewandte Chemie, 2014, 53(11): 2969-2972.
[33]CHAND D, ZHANG J H, SHREEVE J M. Borohydride ionic liquids as hypergolic fuels: A quest for improved stability[J]. Chemistry, 2015, 21(38): 13297-13301.
[34]ZHANG Q H, YIN P, ZHANG J H, et al. Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels[J]. Chemistry, 2014, 20(23): 6909-6914.
[35]LIU T L, QI X J, HUANG S, et al. Exploiting hydrophobic borohydride-rich ionic liquids as faster-igniting rocket fuels[J]. Chemical Communications, 2016, 52(10): 2031-2034.
[36]翁欣妍, 杜宗罡, 于君, 等. 含BH3(CN)BH2(CN)-阴离子的离子液体自着火过程的实验研究[J]. 含能材料, 2018, 26(7): 557-564.
WENG X Y, DU Z G, YU J, et al. Experimental study of hypergolic process of ionic liquids with BH3(CN)BH2(CN)-anion[J]. Chinese Journal of Energetic Materials, 2018, 26(7): 557-564.
[37]ZHANG W Q, QI X J, HUANG S, et al. Bis(borano)hypophosphite-based ionic liquids as ultrafast-igniting hypergolic fuels[J]. Journal of Materials Chemistry A, 2016, 4(23): 8978-8982.
[38]HUANG S, QI X J, LIU T L, et al. Towards safer rocket fuels: Hypergolic imidazolylidene-borane compounds as replacements for hydrazine derivatives[J]. Chemistry-A European Journal, 2016, 22(29): 10187-10193.
[39]LI X Y, HUO H Y, LI H B, et al. Cyanotetrazolylborohydride(CTB)anion-based ionic liquids with low viscosity and high energy capacity as ultrafast-igniting hypergolic fuels[J]. Chemical Communications, 2017, 53(59): 8300-8303.
[40]JIAO N M, ZHANG Y Q, LIU L, et al. Hypergolic fuels based on water-stable borohydride cluster anions with ultralow ignition delay times[J]. Journal of Materials Chemistry A, 2017, 5(26): 13341-13346.
[41]ZHANG S G, ZHANG J H, ZHANG Y, et al. Nanoconfined ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6755-6833.
[42]ZHOU T, GUI C M, SUN L G, et al. Energy applications of ionic liquids: Recent developments and future prospects[J]. Chemical Reviews, 2023, 123(21): 12170-12253.
[43]邓友全. 离子液体: 性质、制备与应用[M]. 北京: 中国石化出版社, 2006.
[44]SEBASTIAO E, COOK C, HU A G, et al. Recent developments in the field of energetic ionic liquids[J]. Journal of Materials Chemistry A, 2014, 2(22): 8153-8173.
[45]RANKE J, STOLTE S, STÖRMANN R, et al. Design of sustainable chemical products: The example of ionic liquids[J]. Chemical Reviews, 2007, 107(6): 2183-2206.
[46]LEE J W, SHIN J Y, CHUN Y S, et al. Toward understanding the origin of positive effects of ionic liquids on catalysis: Formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids[J]. Accounts of Chemical Research, 2010, 43(7): 985-994.
[47]GAO H X, SHREEVE J M. Ionic liquid solubilized boranes as hypergolic fluids[J]. Journal of Materials Chemistry, 2012, 22(22): 11022-11024.
[48]MCCRARY P D, BARBER P S, KELLEY S P, et al. Nonaborane and decaborane cluster anions can enhance the ignition delay in hypergolic ionic liquids and induce hypergolicity in molecular solvents[J]. Inorganic Chemistry, 2014, 53(9): 4770-4776.
[49]PIALAT A, KITOS A A, WITKOWSKI T G, et al. Achieving short ignition delay and high specific impulse with cyanoborohydride-based hypergolic ionic liquids[J]. New Journal of Chemistry, 2022, 46(44): 21212-21220.
[50]ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[51]MCCRARY P D, BEASLEY P A, COJOCARU O A, et al. Hypergolic ionic liquids to mill, suspend, and ignite boron nanoparticles[J]. Chemical Communications, 2012, 48(36): 4311-4313.
[52]方杰, 王尊, 严浩, 等. 双模式离子液体推进剂真空条件催化点火特性[J]. 火箭推进, 2022, 48(5): 1-8.
FANG J, WANG Z, YAN H, et al. Catalytic ignition characteristics of dual-mode ionic liquid propellant under vacuum condition[J]. Journal of Rocket Propulsion, 2022, 48(5): 1-8.
[53]高鹤, 李少龙, 严浩, 等. 双模式离子液体推进剂的分解特性与热试车实验研究[J]. 空间控制技术与应用, 2021, 47(4): 41-47.
GAO H, LI S L, YAN H, et al. The decomposition characteristics and the hot fire test of a dual-mode ionic liquid propellant[J]. Aerospace Control and Application, 2021, 47(4): 41-47.
相似文献/References:
[1]许 宏,袁仁学,孙 波,等.复合加强型推进剂包装容器设计与验证[J].火箭推进,2015,41(02):87.
XU Hong,YUAN Ren-xue,SUN Bo,et al.Design and verification of a reinforced integrated
vessel for liquid propellants[J].Journal of Rocket Propulsion,2015,41(05):87.
[2]王爱玲,梁兴国.液体推进剂火灾爆炸事故类型分析及其预防[J].火箭推进,2009,35(02):58.
Wang Ailing,Liang Xingguo.Analysis of fire and explosion accidents
of liquid propellants and the prevention[J].Journal of Rocket Propulsion,2009,35(05):58.
[3]符全军.液体推进剂的现状及未来发展趋势[J].火箭推进,2004,(01):1.
[4]李新其,刘祥萱,李红霞,等.液体推进剂贮运可靠性模糊故障树方法研究[J].火箭推进,2004,(05):31.
Li Xinqi,Liu Xiangxuan,Li Hongxia.Fuzzy Fault Tree Method of the Liquid Propellant Store and Transport Security Estimate and Forecast[J].Journal of Rocket Propulsion,2004,(05):31.
[5]陈军,丁博深,段燕.氢/氧火箭发动机试验自动紧急关机程序设计[J].火箭推进,2016,42(02):69.
CHEN Jun,DING Boshen,DUAN Yan.Design of automatic emergency cut-off program in LH2/LOX engine test[J].Journal of Rocket Propulsion,2016,42(05):69.
[6]王菊香,瞿 军,邢志娜,等.近红外光谱技术在推进剂质量检测中的应用[J].火箭推进,2018,44(02):82.
WANG Juxiang,QU Jun,XING Zhina,et al.Application of NIRS analysis technology in liquid propellant quality detection[J].Journal of Rocket Propulsion,2018,44(05):82.
备注/Memo
收稿日期:2024- 01- 18修回日期:2024- 05- 02
基金项目:国家自然科学基金(22205021)
作者简介:费 腾(1990—),男,博士,研究领域为液体推进剂和高能量密度化合物。