航天推进技术研究院主办
LIU Han,XIAO Yuanyuan,ZHENG Mo,et al.Pyrolysis endothermic and oxidative exothermic mechanisms of JP-10 unraveled by ReaxFF molecular dynamics simulation[J].Journal of Rocket Propulsion,2024,50(05):53-64.[doi:10.3969/j.issn.1672-9374.2024.05.005]
ReaxFF MD方法揭示的JP-10热解吸热与氧化放热机理
- Title:
- Pyrolysis endothermic and oxidative exothermic mechanisms of JP-10 unraveled by ReaxFF molecular dynamics simulation
- 文章编号:
- 1672-9374(2024)05-0053-12
- Keywords:
- endothermic hydrocarbon fuel; molecular dynamics simulation; ReaxFF; JP-10; endothermic reaction mechanism; oxidation reaction mechanism
- 分类号:
- V312.1
- 文献标志码:
- A
- 摘要:
- 认识裂解吸热和氧化放热反应机理对发展高超声速飞行器所需要的吸热型碳氢燃料极为重要。通过基于ReaxFF力场的反应分子动力学模拟(ReaxFF MD),揭示了JP-10热裂解吸热与氧化放热的微观反应机理。升温模拟结果表明,JP-10氧化体系总反应热效应由吸热转变为放热的转折点在2 600 K附近,吸热阶段开环反应的吸热量约占总吸热量的64%。在JP-10氧化阶段,H自由基和O2反应生成HO2,进而生成HO自由基以及含氧自由基生成H2O的反应会大量释热,约占总放热量的54%。结果表明:基于ReaxFF MD模拟、通过反应热分析识别重要反应是一种有潜力认识燃料分子结构对燃料裂解吸热能力及裂解产物组成对燃料氧化释热能力影响规律的新途径。
- Abstract:
- Understanding the mechanisms of pyrolysis endothermic and oxidative exothermic reactions is vital in developing endothermic hydrocarbon fuel in reducing engine surface temperature of hypersonic vehicle. In this paper, the reaction mechanisms of endothermic and exothermic processes were revealed for the widely used endothermic fuel of JP-10 by ReaxFF molecular dynamics simulations(ReaxFF MD). The heat-up simulation results show that the transition point from endothermic to exothermic for the total reaction heat effect of JP-10 oxidation system is around 2 600 K. The absorbed heat of the ring-opening reactions in the endothermic stage accounts for about 64% of the total heat absorption. The stepwise reactions of H free radicals and O2 into HO2 and HO free radicals, and HO2 and HO into H2O will release a large amount of heat, accounting for about 54% of the total heat release in the oxidation stage. This work demonstrates that reaction energy analysis of ReaxFF MD simulations is potentially a new approach for identifying important reaction pathways and understanding the effects of fuel molecular structures on fuel endothermic capacity and fuel pyrolyzate composition on fuel oxidative exothermic capacity.
参考文献/References:
[1] 刘大响, 金捷. 21世纪世界航空动力技术发展趋势与展望[J]. 中国工程科学, 2004, 6(9): 1-8.
LIU D X, JIN J. The development trends and prospect of world aeropropulsion technology in the 21st century[J]. Strategic Study of CAE, 2004, 6(9): 1-8.
[2]符全军, 燕珂, 杜宗罡, 等. 吸热型碳氢燃料研究进展[J]. 火箭推进, 2005, 31(5): 32-36.
FU Q J, YAN K, DU Z G, et al. Research progress of endothermic hydrocarbon fuels[J]. Journal of Rocket Propulsion, 2005, 31(5): 32-36.
[3]EDWARDS T. Liquid fuels and propellants for aerospace propulsion: 1903-2003[J]. Journal of Propulsion and Power, 2003, 19(6): 1089-1107.
[4]王镜淇, 王成刚, 陈雪娇, 等. RBCC组合动力用液体推进剂研究进展[J]. 火箭推进, 2022, 48(6): 101-112.
WANG J Q, WANG C G, CHEN X J, et al. Research progress of liquid propellant development for RBCC engine[J]. Journal of Rocket Propulsion, 2022, 48(6): 101-112.
[5]熊中强, 米镇涛, 张香文, 等. 合成高密度烃类燃料研究进展[J]. 化学进展, 2005, 17(2): 359-367.
XIONG Z Q, MI Z T, ZHANG X W, et al. Development of synthesized high-density hydrocarbon fuels[J]. Progress in Chemistry, 2005, 17(2): 359-367.
[6]杜宗罡, 史雪梅, 符全军. 高能液体推进剂研究现状和应用前景[J]. 火箭推进, 2005, 31(3): 30-34.
DU Z G, SHI X M, FU Q J. Development status and prospect of higher energy liquid propellant[J]. Journal of Rocket Propulsion, 2005, 31(3): 30-34.
[7]周劲松, 冯渐超, 张志勇, 等. 环戊二烯合成巡航导弹用高密度烃燃料[J]. 化学推进剂与高分子材料, 2003, 1(2): 17-21.
ZHOU J S, FENG J C, ZHANG Z Y, et al. Synthesis of high density hydrocarbon fuel from cyclopentadiene for cruise missile[J]. Chemical Propellants & Polymeric Materials, 2003, 1(2): 17-21.
[8]焦燕, 冯利利, 朱岳麟, 等. 美国军用喷气燃料发展综述[J]. 火箭推进, 2008, 34(1): 30-35.
JIAO Y, FENG L L, ZHU Y L, et al. Review of American military jet fuels development[J]. Journal of Rocket Propulsion, 2008, 34(1): 30-35.
[9]邢燕, 方文军, 谢文杰, 等. 吸热型碳氢燃料模型化合物在超临界条件下的裂解及热沉测定[J]. 化学学报, 2008, 66(20): 2243-2247.
XING Y, FANG W J, XIE W J, et al. Thermal cracking and heat sink measurement of model compounds of endothermic hydrocarbon fuels under supercritical conditions[J]. Acta Chimica Sinica, 2008, 66(20): 2243-2247.
[10]VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
[11]CHENOWETH K, VAN DUIN A C T, DASGUPTA S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746.
[12]HAN S, LI X X, ZHENG M, et al. Initial reactivity differences between a 3-component surrogate model and a 24-component model for RP-1 fuel pyrolysis evaluated by ReaxFF MD[J]. Fuel, 2018, 222: 753-765.
[13]ZHAO P, HAN S, LI X X, et al. Comparison of RP-3 pyrolysis reactions between surrogates and 45-component model by ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2019, 33(8): 7176-7187.
[14]ASHRAF C, SHABNAM S, JAIN A, et al. Pyrolysis of binary fuel mixtures at supercritical conditions: A ReaxFF molecular dynamics study[J]. Fuel, 2019, 235: 194-207.
[15]LELE A, KWON H, GANESHAN K, et al. ReaxFF molecular dynamics study on pyrolysis of bicyclic compounds for aviation fuel[J]. Fuel, 2021, 297: 120724.
[16]KWON H, LELE A, ZHU J Q, et al. ReaxFF-based molecular dynamics study of bio-derived polycyclic alkanes as potential alternative jet fuels[J]. Fuel, 2020, 279: 118548.
[17]ZHENG M, LI X X, GUO L. Algorithms of GPU-enabled reactive force field(ReaxFF)molecular dynamics[J]. Journal of Molecular Graphics and Modelling, 2013, 41: 1-11.
[18]LIU J, LI X X, GUO L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. Journal of Molecular Graphics and Modelling, 2014, 53: 13-22.
[19]LI X X, ZHENG M, REN C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739.
[20]LIU H, LIANG J H, HE R N, et al. Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation[J]. Combustion and Flame, 2022, 237: 111865.
[21]SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. NPJ Computational Mathematics, 2016, 2: 15011.
[22]MAO Q, FENG M Y, JIANG X Z, et al. Classical and reactive molecular dynamics: Principles and applications in combustion and energy systems[J]. Progress in Energy and Combustion Science, 2023, 97: 101084.
[23]QIN X M, XIE H J, YUE L, et al. A quantum chemistry study on thermochemical properties of high energy-density endothermic hydrocarbon fuel JP-10[J]. Journal of Molecular Modeling, 2014, 20(4): 2183.
[24]ZEHE M J, JAFFE R L. Theoretical calculation of jet fuel thermochemistry. 1. tetrahydrodicylopentadiene(JP10)thermochemistry using the CBS-QB3 and G3(MP2)//B3LYP methods[J]. The Journal of Organic Chemistry, 2010, 75(13): 4387-4391.
[25]CHENOWETH K, VAN DUIN A C T, GODDARD W. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040-1053.
[26]LI S, VARATHARAJAN B, WILLIAMS F. Chemistry of JP-10 ignition[J]. AIAA Journal, 2001, 39: 2351-2356.
[27]GAO C W, VANDEPUTTE A G, YEE N W, et al. JP-10 combustion studied with shock tube experiments and modeled with automatic reaction mechanism generation[J]. Combustion and Flame, 2015, 162(8): 3115-3129.
[28]ZHONG B J, ZENG Z M, ZHANG H Z. An experimental and kinetic modeling study of JP-10 combustion[J]. Fuel, 2022, 312: 122900.
[29]JIANG H P, SHEN W, BAI S J, et al. Revised HyChem modeling combustion chemistry of air-breathing high-energy density jet fuel: JP-10[J]. Combustion and Flame, 2023, 248: 112578.
[30]WANG H, XU R, WANG K, et al. A physics-based approach to modeling real-fuel combustion chemistry-I. evidence from experiments, and thermodynamic, chemical kinetic and statistical considerations[J]. Combustion and Flame, 2018, 193: 502-519.
相似文献/References:
[1]杜宗罡,史雪梅,符全军,等.高能液体推进剂研究现状和应用前景[J].火箭推进,2005,31(03):30.
Du Zonggang,Shi Xuemei,Fu Quanjun.Development status and prospect of higher energy liquid propellant[J].Journal of Rocket Propulsion,2005,31(05):30.
[2]符全军,燕珂,杜宗罡,等.吸热型碳氢燃料研究进展[J].火箭推进,2005,31(05):36.
Fu Quanjun,Yan Ke,Du Zonggang,et al.Research progress of endothermic hydrocarbon fuels[J].Journal of Rocket Propulsion,2005,31(05):36.
[3]刘朝晖,宋晨阳,陈 强,等.吸热型碳氢燃料再生冷却性能评估方法[J].火箭推进,2020,46(02):15.
LIU Zhaohui,SONG Chenyang,CHEN Qiang,et al.Evaluation methods on regenerative cooling performance for endothermic hydrocarbon fuel[J].Journal of Rocket Propulsion,2020,46(05):15.
[4]黄永民,李旭博,胡旭,等.HAN基单组元推进剂热分解过程的分子动力学模拟[J].火箭推进,2024,50(05):106.[doi:10.3969/j.issn.1672-9374.2024.05.010]
HUANG Yongmin,LI Xubo,HU Xu,et al.Molecular dynamics simulation of thermal decomposition mechanism for HAN based monopropellant[J].Journal of Rocket Propulsion,2024,50(05):106.[doi:10.3969/j.issn.1672-9374.2024.05.010]
备注/Memo
收稿日期:2024- 01- 26修回日期:2024- 06- 12
基金项目:国家自然科学基金(22173106,22279145); 中国科学院战略性先导科技专项(XDA0390502)
作者简介:刘 晗(1996—),男,博士研究生,研究领域为高密度吸热型碳氢燃料。