航天推进技术研究院主办
LIU Zhaohui,CHEN Xuejiao,JIANG Rongpei.Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions[J].Journal of Rocket Propulsion,2024,50(05):114-121.[doi:10.3969/j.issn.1672-9374.2024.05.011]
超高参数火箭煤油在小通道圆管内的流动换热特性
- Title:
- Convective heat transfer characteristics of rocket kerosene in circular mini-tubes at ultra-high parameter conditions
- 文章编号:
- 1672-9374(2024)05-0114-08
- Keywords:
- regenerative cooling; rocket kerosene; heat transfer; ultra-high parameter; mini-channel; high heat flux
- 分类号:
- V19
- 文献标志码:
- A
- 摘要:
- 火箭煤油再生冷却过程具有高压、高温、高热流密度和高质量流速等特点。在超高参数条件下,采用低电压大电流电加热方法模拟火箭发动机推力室壁面热环境,在高温合金钢φ2 mm×0.5 mm圆管内研究了火箭煤油的流动换热特性。参数范围为压力25~65 MPa,质量流速8 500~51 000 kg/(m2·s),流体温度常温为~500 ℃,热流密度最高为35 MW/m2。研究表明:在所测试条件下,火箭煤油在小通道圆管内处于单相液态强制对流换热机制; 换热性能主要受到流体温度和质量流速的影响; 流体温度增加,换热系数增加; 质量流速增加,换热系数增加; 压力在25~65 MPa范围内对换热性能无显著影响; 热流密度增加,内壁温显著增加,但热流密度变化对换热系数无显著影响; 受入口强化换热效应的影响,换热系数增加,热流密度越高,入口效应越明显。超高参数尤其是超高压力条件下的火箭煤油换热特性,为火箭煤油再生冷却技术应用提供参考。
- Abstract:
- The regenerative cooling process using rocket kerosene has the specifications of high pressure, high temperature, high heat flux and high mass flow rate. Under the condition of ultra-high parameters, the low-voltage and high-current electrical heating method was used to simulate the thermal environment of the thrust chamber in the rocket engine, and the heat transfer characteristics of rocket kerosene are studied in the high-temperature alloy steel φ2 mm×0.5 mm round tube. The parameter ranges are of pressure 25-65 MPa, mass flow rate 8 500~51 000 kg/(m2·s), fluid temperature up to ~500 ℃ and heat flux up to 35 MW/m2. The results indicate that under the tested conditions, the rocket kerosene is in a single-phase liquid forced convection heat transfer mechanism. The heat transfer performance is mainly affected by the fluid temperature and mass flow rate. As the fluid temperature increased, the heat transfer coefficient increases. As the mass flow rate increased, the heat transfer coefficient increases. The pressure in the range of 25-65 MPa has no significant effect on the heat transfer performance. With the increase of heat flux, the inner wall temperature increases significantly, but the variation of heat flux has no significant effect on the heat transfer coefficient. Under the influence of the heat transfer enhance effect at the inlet, the heat transfer coefficient increases, and the higher the heat flux, the more obvious the inlet effect is. The heat transfer characteristics of rocket kerosene under ultra-high parameters, especially under ultra-high pressure conditions, provide a reference for the application of regenerative cooling technology in the rocket engine.
参考文献/References:
[1] 蔡国飙. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社, 2011.
[2]KANDA T, MASUYA G, WAKAMATSU Y, et al. Effect of regenerative cooling on rocket engine specific impulse[J]. Journal of Propulsion and Power, 1994, 10(2): 286-288.
[3]侯瑞峰, 李龙飞, 陈建华, 等. 液体火箭发动机不同室压下冷却方案适用范围[J]. 航空动力学报, 2022, 37(12): 2797-2806.
HOU R F, LI L F, CHEN J H, et al. Adaptability of cooling structure schemes of liquid propellant rocket engine thrust chamber under different pressures[J]. Journal of Aerospace Power, 2022, 37(12): 2797-2806.
[4]BATES R, EDWARDS J, MEYER M. Heat transfer and deposition behavior of hydrocarbon rocket fuels[C]//41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2003.
[5]陈锐达,徐辉,陈泓宇,等. 1.5 tf再生冷却液体火箭发动机关键技术与试验验证[J].火箭推进,2023,49(4):17-25.
CHEN R D, XU H, CHEN H Y, et al. Key technologies and test verification of 1.5 tf liquid rocket engine with regenerative cooling[J]. Journal of Rocket Propulsion, 2023, 49(4): 17-25.
[6]MAAS E, IRVINE S, BATES R, et al. A high heat flux facility design for testing of advanced hydrocarbon fuel thermal stability[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: AIAA, 2005.
[7]LUO S B, XU D Q, SONG J W, et al. A review of regenerative cooling technologies for scramjets[J]. Applied Thermal Engineering, 2021, 190: 116754.
[8]颜建国.高热流密度主动冷却通道内过冷水和碳氢燃料的流动传热特性研究[D]. 西安: 西安交通大学, 2016.
[9]BILLINGSLEY M. Thermal stability and heat transfer characteristics of RP-2[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: AIAA, 2008.
[10]HERNANDEZ L, PALACIOS R, ORTEGA D, et al. The effect of surface roughness on LCH4 boiling heat transfer performance of conventionally and additively manufactured rocket engine regenerative cooling channels[C]//AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: AIAA, 2019.
[11]LIANG K M, YANG B E, ZHANG Z L. Investigation of heat transfer and coking characteristics of hydrocarbon fuels[J]. Journal of Propulsion and Power, 1998, 14(5): 789-796.
[12]胡志宏, 陈听宽, 罗毓珊, 等. 超临界压力下煤油传热特性试验研究[J]. 西安交通大学学报, 1999, 33(9): 62-65.
HU Z H, CHEN T K, LUO Y S, et al. Heat transfer characteristics of kerosene at supercritical pressure[J]. Journal of Xi'an Jiaotong University, 1999, 33(9): 62-65.
[13]胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性[J]. 化工学报, 2002, 53(2): 134-138.
HU Z H, CHEN T K, LUO Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(2): 134-138.
[14]罗毓珊, 陈听宽, 胡志宏, 等. 高参数小管径内煤油的传热特性研究[J]. 工程热物理学报, 2005, 26(4): 609-612.
LUO Y S, CHEN T K, HU Z H, et al. Investigation on heat transfer characteristics for kerosene under high parameter and in small diameter tube[J]. Journal of Engineering Thermophysics, 2005, 26(4): 609-612.
[15]YAN J G, LIU S C, GUO P C, et al. Experiments on heat transfer of supercritical pressure kerosene in mini tube under ultra-high heat fluxes[J]. Energies, 2020, 13(5): 1229.
[16]WANG H J, LUO Y S, GU H F, et al. Experimental investigation on heat transfer and pressure drop of kerosene at supercritical pressure in square and circular tube with artificial roughness[J]. Experimental Thermal and Fluid Science, 2012, 42: 16-24.
[17]罗玉宏, 游岳, 蒋榕培, 等. 添加减阻剂的火箭煤油流阻与传热特性研究[J]. 火箭推进, 2018, 44(5): 66-70.
LUO Y H, YOU Y, JIANG R P, et al. Study on flow resistance and heat transfer characteristics of rocket kerosene adding drag reducer[J]. Journal of Rocket Propulsion, 2018, 44(5): 66-70.
[18]张赞坚, 刘朝晖, 潘辉, 等. 低流阻火箭煤油的超临界压力流动与换热特性[J]. 西安交通大学学报, 2019, 53(1): 129-134.
ZHANG Z J, LIU Z H, PAN H, et al. Flow and heat transfer characteristics of low-flow resistance rocket kerosene under supercritical pressure[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 129-134.
[19]张家庆, 蒋榕培, 史伟康, 等. 煤基/石油基火箭煤油高参数黏温特性与组分特性研究[J]. 化工学报, 2023, 74(2): 653-665.
ZHANG J Q, JIANG R P, SHI W K, et al. Study on viscosity-temperature characteristics and component characteristics of rocket kerosene[J]. CIESC Journal, 2023, 74(2): 653-665.
[20]李沛奇, 陈雪娇, 武博翔, 等. 高参数石油基和煤基火箭煤油射线法密度测量实验研究[J]. 化工学报, 2024, 75(7): 2422-2432.
LI P Q, CHEN X J, WU B X, et al. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters[J]. CIESC Journal, 2024, 75(7): 2422-2432.
相似文献/References:
[1]孙 鑫,杨成虎.5 kN再生冷却发动机推力室传热研究[J].火箭推进,2012,38(02):32.
SUN Xin,YANG Cheng-hu.Heat transfer investigation for 5 kN regeneratively-cooled engine thrust chamber[J].Journal of Rocket Propulsion,2012,38(05):32.
[2]徐辉,易琪,钟徐,等.1 0kN双向摇摆再生冷却发动机技术研究[J].火箭推进,2009,35(05):8.
Xu Hui,Yi Qi,Zhong Xu,et al.Research on 1 0kN gimbaled regeneratively cooled engine[J].Journal of Rocket Propulsion,2009,35(05):8.
[3]方磊.刘伟.姿控用再生冷却推力室传热特性研究[J].火箭推进,2008,34(06):6.
Fang Lei,Liu Wei.Research on heat transf.er characteristic of regeneratiVely
cooled attitude control engine thmst chamber[J].Journal of Rocket Propulsion,2008,34(05):6.
[4]栾叶君,孙纪国,田昌义,等.氢氧推力室再生冷却内壁故障分析[J].火箭推进,2006,32(05):17.
Luan Yejun,Sun Jiguo,Tian Changyi,et al.Failure analysis on regeneratively cooled wall of a hydrogen-oxygen thrust chamber[J].Journal of Rocket Propulsion,2006,32(05):17.
[5]徐辉,林庆国,汪允武,等.挤压式低室压推力室再生冷却问题[J].火箭推进,2006,32(06):12.
Xu Hui,Lin Qingguo,Wang Yunwu,et al.Regenerative cooling of the pressure-fed thruster with low-pressure chamber[J].Journal of Rocket Propulsion,2006,32(05):12.
[6]许晓勇,赵世红,王召.轻质钛合金喷管在氢氧发动机上的应用研究[J].火箭推进,2016,42(04):1.
XU Xiaoyong,ZHAO Shihong,WANG Zhao.Application of lightweight titanium alloy nozzle in LOX-LH2 rocket engine[J].Journal of Rocket Propulsion,2016,42(05):1.
[7]金烜,沈赤兵,吴先宇,等.超燃冲压发动机再生冷却技术研究进展[J].火箭推进,2016,42(05):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
JIN Xuan,SHEN Chibing,WU Xianyu,et al.Progress of regenerative cooling technology for scramjet[J].Journal of Rocket Propulsion,2016,42(05):66.[doi:10.3969/j.issn.1672-9374.2016.05.012]
[8]张 萌,孙 冰.人工粗糙度对矩形弯曲管道流动与传热数值模拟[J].火箭推进,2020,46(01):20.
ZHANG Meng,SUN Bing.Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J].Journal of Rocket Propulsion,2020,46(05):20.
[9]张 萌,孙 冰.液氧/甲烷发动机推力室肋强化换热技术数值研究[J].火箭推进,2021,47(02):19.
ZHANG Meng,SUN Bing.Numerical study on enhanced heat transfer technology ofLOX/CH4engine chamber with ribs[J].Journal of Rocket Propulsion,2021,47(05):19.
备注/Memo
收稿日期:2024- 05- 24修回日期:2024- 07- 12
基金项目:国家重点项目
作者简介:刘朝晖(1985—),男,博士,副教授,研究领域为汽液两相流与沸腾换热和热物性测量。