PDF下载 分享
[1]胡炜,李敬轩,杨立军,等.不完全角度背景纹影层析测量综述[J].火箭推进,2024,50(06):1-26.[doi:10.3969/j.issn.1672-9374.2024.06.001]
 HU Wei,LI Jingxuan,YANG Lijun,et al.Review of incomplete-angle background-oriented schlieren tomography[J].Journal of Rocket Propulsion,2024,50(06):1-26.[doi:10.3969/j.issn.1672-9374.2024.06.001]
点击复制

不完全角度背景纹影层析测量综述

参考文献/References:

[1] 张彪, 李智豪, 李健, 等. 基于背景导向纹影的火焰三维温度场重建[J]. 工程热物理学报, 2023, 44(1): 158-161.
ZHANG B, LI Z H, LI J, et al. 3D reconstruction of flame temperature distribution based on background oriented schlieren[J]. Journal of Engineering Thermophysics, 2023, 44(1): 158-161.
[2]刘倩, 李敬轩, 孙纪国, 等. 高压氢氧火箭发动机推力室燃烧稳定性分析[J]. 火箭推进, 2022, 48(2): 66-75.
LIU Q, LI J X, SUN J G, et al. Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine[J]. Journal of Rocket Propulsion, 2022, 48(2): 66-75.
[3]蔡华俊, 宋旸, 曹政, 等. 基于背景纹影技术的三维瞬态密度场重建[J]. 气动研究与试验, 2023, 1(6): 79-91.
CAI H J, SONG Y, CAO Z, et al. Reconstruction of 3D instantaneous density field based on background-oriented schlieren technology[J]. Aerodynamic Research & Experiment, 2023, 1(6): 79-91.
[4]杨成虎, 刘犇. 喷雾场测试技术研究进展[J]. 火箭推进, 2010, 36(4): 16-23.
YANG C H, LIU B. Development of diagnostic techniques for spray measurements[J]. Journal of Rocket Propulsion, 2010, 36(4): 16-23.
[5]李自然, 林志勇, 韩旭. 超声速斜爆震发动机起爆过程研究综述[J]. 火箭推进, 2013, 39(3): 1-8.
LI Z R, LIN Z Y, HAN X. Investigation for initiation process of supersonic oblique detonation engine[J]. Journal of Rocket Propulsion, 2013, 39(3): 1-8.
[6]熊渊. 背景纹影测量技术研究与应用进展[J]. 实验流体力学, 2022, 36(2): 30-48.
XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 30-48.
[7]VENKATAKRISHNAN L, MEIER G E A. Density measurements using the background oriented schlieren technique[J]. Experiments in Fluids, 2004, 37(2): 237-247.
[8]BECHER L, GENA A W, ALSAAD H, et al. The spread of breathing air from wind instruments and singers using schlieren techniques[J]. Indoor Air, 2021, 31(6): 1798-1814.
[9]VIOLA I M, PETERSON B, PISETTA G, et al. Face coverings, aerosol dispersion and mitigation of virus transmission risk[J]. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2(1): 26-35.
[10]UNTERBERGER A, MOHRI K. Evolutionary background-oriented schlieren tomography with self-adaptive parameter heuristics[J]. Optics Express, 2022, 30(6): 8592.
[11]BOUDREAUX P, VENKATAKRISHNAN S, IFFA E, et al. Application of reference-free natural background-oriented schlieren photography for visualizing leakage sites in building walls[J]. Building and Environment, 2022, 223(2): 109529.
[12]SUN L J, JIA C H, MIAO Y. Visualization of hydrogen leak for electro-hydrogen coupled system based on background oriented schlieren[J]. Process Safety and Environmental Protection, 2023, 175(1): 437-446.
[13]GARDNER A D, WOLF C C, RAFFEL M. Review of measurement techniques for unsteady helicopter rotor flows[J]. Progress in Aerospace Sciences, 2019, 111(3): 100566.
[14]GRAUER S J, STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experiments in Fluids, 2020, 61(3): 80.
[15]GOLDHAHN E, SEUME J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids, 2007, 43(2): 241-249.
[16]LIU H C, HUANG J Q, LI L, et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented schlieren tomography[J]. Science China Technological Sciences, 2021, 64(1): 98-110.
[17]SETTLES G S. On background-oriented schlieren(BOS)velocimetry[C]//18th International Symposium on Flow Visualization. Zurich:ETH Zurich, 2018.
[18]BEERMANN R, QUENTIN L, PÖSCH A, et al. Background oriented schlieren measurement of the refractive index field of air induced by a hot, cylindrical measurement object[J]. Applied Optics, 2017, 56(14): 4168-4179.
[19]NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren(BOS)measurements[J]. Experiments in Fluids, 2015, 57(1): 13.
[20]HU W, ZHANG Y, LIANG X Y, et al. Background-oriented schlieren measurements for asymmetrical laminar flames along arbitrary rays from a single view[J]. Experiments in Fluids, 2023, 64(8): 145.
[21]GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame, 2018, 196: 284-299.
[22]UKAI T. The principle and characteristics of an image fibre background oriented schlieren(fibre BOS)technique for time-resolved three-dimensional unsteady density measurements[J]. Experiments in Fluids, 2021, 62(8): 170.
[23]BAUKNECHT A, EWERS B, WOLF C, et al. Three-dimensional reconstruction of helicopter blade-tip vortices using a multi-camera BOS system[J]. Experiments in Fluids, 2014, 56(1): 1866.
[24]BATHEL B F, WEISBERGER J, JONES S B. Development of tomographic background-oriented schlieren capability at NASA langley research center[C]//AIAA Aviation 2019 Forum. Reston, Virginia: AIAA, 2019.
[25]SCHWARZ C, BRAUKMANN J N. Practical aspects of designing background-oriented schlieren(BOS)experiments for vortex measurements[J]. Experiments in Fluids, 2023, 64(4): 67.
[26]VINNICHENKO N A, PUSHTAEV A V, PLAKSINA Y Y, et al. Performance of background oriented schlieren with different background patterns and image processing techniques[J]. Experimental Thermal and Fluid Science, 2023, 147: 110934.
[27]IHRKE I. Reconstruction and rendering of time-varying natural phenomena[Z]. 2007.
[28]WERNET M P. Real-time background oriented schlieren with self-illuminated speckle background[J]. Measurement Science and Technology, 2020, 31(1): 017001.
[29]RAFFEL M. Background-oriented schlieren(BOS)techniques[J]. Experiments in Fluids, 2015, 56(3): 60.
[30]SETTLES G S, HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology, 2017, 28(4): 042001.
[31]MEIER A H, ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids, 2013, 54(6): 1549.
[32]AMJAD S, SORIA J, ATKINSON C. Three-dimensional density measurements of a heated jet using laser-speckle tomographic background-oriented schlieren[J]. Experimental Thermal and Fluid Science, 2023, 142(4): 110819.
[33]OTA M, LEOPOLD F, NODA R, et al. Improvement in spatial resolution of background-oriented schlieren technique by introducing a telecentric optical system and its application to supersonic flow[J]. Experiments in Fluids, 2015, 56(3): 48.
[34]HIROSE Y, YAMAGISHI M, UDAGAWA S, et al. Double-pass imaging background-oriented schlieren technique for focusing on measurement target[J]. Experiments in Fluids, 2023, 64(9): 151.
[35]DING H L, YI S H, ZHAO X H. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren[J]. Applied Optics, 2019, 58(11): 2948-2962.
[36]易仕和, 丁浩林. 适用高超声速飞行环境的超声速气膜冷却光学窗口研究进展[J]. 空天防御, 2021, 4(4): 1-13.
YI S H, DING H L. Research progress of optical aperture with supersonic film cooling under hypersonic flight environment[J]. Air & Space Defense, 2021, 4(4): 1-13.
[37]LIU H C, SHUI C Y, CAI W W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera[J]. Aerospace Science and Technology, 2020, 97: 105621.
[38]WU J, PAN Z X, ZHANG C P, et al. A non-axisymmetric temperature field reconstruction method based on the interferometric fringe schlieren method[J]. Measurement Science and Technology, 2023, 34(4): 044005.
[39]SCHMIDT B E, WOIKE M R. Wavelet-based optical flow analysis for background-oriented schlieren image processing[Z]. 2021.
[40]SUN C L, HSIAO T H. On the background design for microscale background-oriented schlieren measurements of microfluidic mixing[J]. Microfluidics and Nanofluidics, 2014, 17(2): 375-391.
[41]MOUMEN A, GROSSEN J, NDINDABAHIZI I, et al. Visualization and analysis of muzzle flow fields using the background-oriented schlieren technique[J]. Journal of Visualization, 2020, 23(3): 409-423.
[42]SOURGEN F, LEOPOLD F, KLATT D. Reconstruction of the density field using the colored background oriented schlieren technique(CBOS)[J]. Optics and Lasers in Engineering, 2012, 50(1): 29-38.
[43]MIER F A, HARGATHER M J. Color gradient background-oriented schlieren imaging[J]. Experiments in Fluids, 2016, 57(6): 95.
[44]GARDNER A D, RAFFEL M, SCHWARZ C, et al. Reference-free digital shadowgraphy using a moving BOS background[J]. Experiments in Fluids, 2020, 61(2): 44.
[45]REICHENZER F, SCHNEIDER M, HERKOMMER A. Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds[J]. Experiments in Fluids, 2021, 62(9): 196.
[46]CAKIR B O, LAVAGNOLI S, SARACOGLU B H, et al. Assessment and application of optical flow in background-oriented schlieren for compressible flows[J]. Experiments in Fluids, 2022, 64(1): 11.
[47]ATCHESON B, HEIDRICH W, IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids, 2009, 46(3): 467-476.
[48]RAJENDRAN L K, BANE S P M, VLACHOS P P. Dot tracking methodology for background-oriented schlieren(BOS)[J]. Experiments in Fluids, 2019, 60(11): 162.
[49]WILDEMAN S. Real-time quantitative schlieren imaging by fast Fourier demodulation of a checkered backdrop[J]. Experiments in Fluids, 2018, 59(6): 97.
[50]CAI H J, SONG Y, JI Y J, et al. Displacement extraction of background-oriented schlieren images using Swin transformer[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2023, 40(6): 1029-1041.
[51]OTA K, UKAI T, WAKAI T. Spatial resolution improvement by a super-resolution technique depending on training process in the background-orientated schlieren analyses[EB/OL]. https://www.semanticscholar.org/paper/Spatial-resolution-improvement-by-a-technique-on-in-Ota-Ukai/f44aa6161c2a41ff03f8048da1ad10861e2c36fe, 2023.
[52]MUCIGNAT C, MANICKATHAN L, SHAH J, et al. A lightweight convolutional neural network to reconstruct deformation in BOS recordings[J]. Experiments in Fluids, 2023, 64(4): 72.
[53]XIONG Y, WEILENMANN M, NOIRAY N. Analysis and reduction of spurious displacements in high-framing-rate background-oriented schlieren[J]. Experiments in Fluids, 2020, 61(2): 49.
[54]SIPKENS T A, GRAUER S J, STEINBERG A M, et al. New transform to project axisymmetric deflection fields along arbitrary rays[J]. Measurement Science and Technology, 2022, 33(3): 035201.
[55]LANG H M, OBERLEITHNER K, PASCHEREIT C O, et al. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography[J]. Experiments in Fluids, 2017, 58(7): 88.
[56]ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[57]THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab[J]. Journal of Open Research Software, 2021, 9(1): 12.
[58]BRADSKI G. The openCV library[J]. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 2000, 25(11): 120-123.
[59]CAI H J, SONG Y, JI Y J, et al. Direct background-oriented schlieren tomography using radial basis functions[J]. Optics Express, 2022, 30(11): 19100-19120.
[60]ATCHESON B, IHRKE I, BRADLEY D, et al. Imaging and 3D tomographic reconstruction of time-varying, inhomogeneous refractive index fields[C]//SIGGRAPH'07: ACM SIGGRAPH 2007 Sketches. San Diego, California:ACM, 2007:32.
[61] STOFFELS M, SIMON S, NIKOLIC P G, et al. Development of a multiperspective optical measuring system for investigating decaying switching arcs at the nozzle exit of circuit breakers[J]. Applied Optics, 2017, 56(7): 2007-2019.
[62]LEE J Y, KIM N, MIN K. Measurement of spray characteristics using the background-oriented schlieren technique[J]. Measurement Science and Technology, 2013, 24(2): 25303.
[63]MOLNAR J P, GRAUER S J, LÉON O, et al. Physics-informed background-oriented schlieren of turbulent underexpanded jets[C]//AIAA SCITECH 2023 Forum. Reston, Virginia: AIAA, 2023:2441.
[64]刘何聪. 基于三维层析成像技术的火焰结构和温度场测量方法研究[D]. 上海: 上海交通大学, 2019.
LIU H C. Research on measurement of flame structure and temperature distribution based on volumetric imaging[D]. Shanghai: Shanghai Jiao Tong University, 2019.
[65]DAVIS J K, CLIFFORD C J, KELLY D L, et al. Tomographic background oriented schlieren using plenoptic cameras[J]. Measurement Science and Technology, 2022, 33(2): 025203.
[66]WAHLS B H, EKKAD S V. Temperature reconstruction of an axisymmetric enclosed reactive flow using simultaneous background oriented schlieren and infrared thermography[J]. Measurement Science and Technology, 2022, 33(11): 115201.
[67]朱海军, 王倩, 梅笑寒, 等. 基于高速纹影/阴影成像的流场测速技术研究进展[J]. 实验流体力学, 2022, 36(2): 49-73.
ZHU H J, WANG Q, MEI X H, et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49-73.
[68]CAI S Z, WANG Z C, FUEST F, et al. Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics, 2021, 915: 102.
[69]MOLNAR J P, VENKATAKRISHNAN L, SCHMIDT B E, et al. Estimating density, velocity, and pressure fields in supersonic flows using physics-informed BOS[J]. Experiments in Fluids, 2023, 64(1): 14.
[70]OTA M, HAMADA K, KATO H, et al. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren(CGBOS)technique[J]. Measurement Science and Technology, 2011, 22(10): 104011.
[71]LEE C, OZAWA Y, HAGA T, et al. Comparison of three-dimensional density distribution of numerical and experimental analysis for twin jets[J]. Journal of Visualization, 2021, 24(6): 1173-1188.
[72]ATCHESON B, IHRKE I, HEIDRICH W, et al. Time-resolved 3D capture of non-stationary gas flows[J]. ACM Transactions on Graphics, 2008, 27(5): 132.
[73]宋尔壮, 雷庆春, 范玮. 基于层析原理的湍流火焰三维测量综述[J]. 实验流体力学, 2020, 34(1): 1-11.
SONG E Z, LEI Q C, FAN W. A review on three-dimensional flame measurements based on tomography[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 1-11.
[74]MARTINS F J W A, FOO C T, UNTERBERGER A, et al. Analyzing 3D fields of refractive index, emission and temperature in spray-flame nanoparticle synthesis via tomographic imaging using multi-simultaneous measurements(TIMes)[J]. Applications in Energy and Combustion Science, 2023, 16: 100213.
[75]MARTINS F J W A, UNTERBERGER A, MOHRI K. Tomographic imaging using multi-simultaneous measurements(TIMes)of emission and refractive index 3D fields in turbulent flames[J]. Proceedings of the Combustion Institute, 2023, 39(1): 1405-1413.
[76]UNTERBERGER A, MARTINS F J W A, MOHRI K. Coupled 3D evolutionary reconstruction technique for multi-simultaneous measurements[J]. Fuel, 2023, 346: 128336.
[77]JUNG H. Basic physical principles and clinical applications of computed tomography[J]. Progress in Medical Physics, 2021, 32(1): 1-17.
[78]张瀚铭. CT不完全数据重建算法研究[D]. 郑州: 解放军信息工程大学, 2017.
ZHANG H M. Computed tomography image reconstruction with incomplete projection data[D]. Zhengzhou: PLA Information Engineering University, 2017.
[79]LEE C, OZAWA Y, NAGATA T, et al. Super-resolution of time-resolved three-dimensional density fields of the B mode in an underexpanded screeching jet[EB/OL]. https://pubs.aip.org/aip/pof/article-abstract/35/6/ 065128/2896440/Super-resolution-of-time-resolved-three?redirectedFrom=fulltext, 2023.
[80]CORREIA T, GIBSON A, SCHWEIGER M, et al. Selection of regularization parameter for optical topography[J]. Journal of Biomedical Optics, 2009, 14(3): 034044.
[81]GOLUB G H, HEATH M, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J]. Technometrics, 1979, 21(2): 215.
[82]WEI C Y, SCHWARM K K, PINEDA D I, et al. Volumetric laser absorption imaging of temperature, CO and CO2 in laminar flames using 3D masked Tikhonov regularization[J]. Combustion and Flame, 2021, 224: 239-247.
[83]LIU H C, YU T, ZHANG M, et al. Demonstration of 3D computed tomography of chemiluminescence with a restricted field of view[J]. Applied Optics, 2017, 56(25): 7107-7115.
[84]JIN Y, GUO Z Y, SONG Y, et al. Sparse regularization-based reconstruction for 3D flame chemiluminescence tomography[J]. Applied Optics, 2021, 60(3): 513-525.
[85]LANZILLOTTA L, LÉON O, DONJAT D, et al. 3D density reconstruction of a screeching supersonic jet by synchronized multi-camera background oriented schlieren[C]//EUCASS 2019.[S.l.]:[s.n.],2019.
[86]LI Z H, CHEN X Y, ZHANG B, et al. 3D flow visualization via background oriented schlieren tomogra-phy[C]//2022 International Conference on Computing, Communication, Perception and Quantum Technology(CCPQT). Xiamen, China:IEEE, 2022:76-81.
[87]TODOROFF V, PLYER A, BESNERAIS G L, et al. 3D reconstruction of the density field of a jet using synthetic bos images[EB/OL]. https://www.semanticscholar.org/paper/3D-RECONSTRUCTION-OF-THE-DENSITY-FIELD-OF-A-JET-BOS-Todoroff-Plyer/945ee521acd19ec-76c8c8698d596512081338b5d, 2012.
[88]ZHANG B, WU Z H, ZHAO M M. Deflection tomographic reconstructions of a three-dimensional flame structure and temperature distribution of premixed combustion[J]. Applied Optics, 2015, 54(6): 1341-1349.
[89]AMJAD S, KARAMI S, SORIA J, et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren(BOS)[J]. Measurement Science and Technology, 2020, 31(11): 114002.
[90]倪浩伟, 刘国炎, 周毅, 等. 基于多紫外相机的旋流火焰三维锋面层析重建[J]. 航空学报, 2023, 44(18):143-156.
NI H W, LIU G Y, ZHOU Y, et al. 3D front tomographic reconstruction of swirl flame by ultraviolet multi-camera imaging[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 143-156.
[91]杨富强, 张定华, 黄魁东, 等. CT不完全投影数据重建算法综述[J]. 物理学报, 2014, 63(5): 9-20. YANG F Q, ZHANG D H, HUANG K D, et al. Review of reconstruction algorithms with incomplete projection data of computed tomography[J]. Acta Physica Sinica, 2014, 63(5): 9-20.
[92]ZHANG B, ZHAO M M, LIU Z G, et al. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction[J]. Optics and Lasers in Engineering, 2016, 83(1): 23-31.
[93]BÜHLMANN P. Laser speckle background oriented schlieren imaging for near-wall measurements[D]. Zurich:ETH Zurich, 2020.
[94]LEOPOLD F, OTA M, KLATT D, et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization, 2013, 1(2): 69-76.
[95]GOMEZ M, GRAUER S J, LUDWIGSEN J, et al. Megahertz-rate background-oriented schlieren tomography in post-detonation blasts[J]. Applied Optics, 2022, 61(10): 2444.
[96]HANSEN P C, SAXILD-HANSEN M. AIR Tools:A MATLAB package of algebraic iterative reconstruction methods[J]. Journal of Computational and Applied Mathematics, 2012, 236(8): 2167-2178.
[97]VAN HINSBERG N P, RÖSGEN T. Density measurements using near-field background-oriented schlieren[J]. Experiments in Fluids, 2014, 55(4): 1720.
[98]TOKGOZ S, GEISLER R, VAN BOKHOVEN L A, et al. Temperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methods[J]. Measurement Science and Technology, 2012, 23(11): 115302.
[99]ELSINGA G E, VAN OUDHEUSDEN B W, SCARANO F, et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren[J]. Experiments in Fluids, 2004, 36(2): 309-325.
[100]JI H, LI Y H. Block conjugate gradient algorithms for least squares problems[J]. Journal of Computational and Applied Mathematics, 2017, 317: 203-217.
[101]JONES G A, HUTHWAITE P. Limited view X-ray tomography for dimensional measurements[J]. NDT & E International, 2018, 93: 98-109.
[102]邸江磊, 林俊成, 钟丽云, 等. 基于深度学习的稀疏或有限角度CT重建方法研究综述[J]. 激光与光电子学进展, 2023, 60(8): 42-79.
DI J L, LIN J C, ZHONG L Y, et al. Review of sparse-view or limited-angle CT reconstruction based on deep learning[J]. Laser & Optoelectronics Progress, 2023, 60(8): 42-79.
[103]ROHLFS L, WEISS J. Assimilating velocity fields from bos measurements in supersonic flows using physics informed neural networks[C]//AIAA Aviation 2023 Forum. Reston, Virginia:AIAA,2023:4363.
[104]HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875: 2.
[105]HUANG J Q, LIU H C, WANG Q, et al. Limited-projection volumetric tomography for time-resolved turbulent combustion diagnostics via deep learning[J]. Aerospace Science and Technology, 2020, 106: 106123.
[106]JIN Y, ZHANG W Q, SONG Y, et al. Three-dimensional rapid flame chemiluminescence tomography via deep learning[J]. Optics Express, 2019, 27(19): 27308-27334.
[107]RONG S H, SONG Y, WU C X, et al. A camera array based reconstruction method for limited observation windows projection in three-dimensional flame chemiluminescence tomography[J]. Engineering Research Express, 2022, 4(3): 035003.
[108]荣韶华. 有限窗口燃烧场的非完全数据发射层析重建方法研究[D]. 南京: 南京理工大学, 2021.
RONG S H.Study on incomplete data emission tomography reconstruction method of limited window combustion field[D]. Nanjing: Nanjing University of Science and Technology, 2021.
[109]BO L, CAI H J, SONG Y, et al. Background-oriented schlieren tomography using gated recurrent unit[J]. Optics Express, 2023, 31(23): 39182-39200.
[110]GRAUER S J. Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network[J]. Measurement Science and Technology, 2022, 33(6): 065305.
[111]KLEMKOWSKY J N, FAHRINGER T W, CLIFFORD C J, et al. Plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology, 2017, 28(9): 095404.
[112]TAN Z P, JOHNSON K, CLIFFORD C, et al. Development of a modular, high-speed plenoptic-camera for 3D flow-measurement[J]. Optics Express, 2019, 27(9): 13400-13415.
[113]GUILDENBECHER D R, KUNZLER M, SWEATT W, et al. High-magnification, long-working distance plenoptic background oriented schlieren(BOS)[C]//AIAA Scitech 2020 Forum. Reston, Virginia: AIAA, 2020:2206.
[114]KLEMKOWSKY J N, CLIFFORD C J, BATHEL B F, et al. A direct comparison between conventional and plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology, 2019, 30(6): 064001.
[115]WANG Q, YU T, LIU H, et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B-Optical Physics, 2020, 37(4): 1231-1239.
[116]SANNED D, LINDSTRÖM J, ROTH A, et al. Arbitrary position 3D tomography for practical application in combustion diagnostics[J]. Measurement Science and Technology, 2022, 33(12): 125206.
[117]WANG J, LI M, GUO Z, et al. Camera spatial arrangement influence on reconstruction accuracy of chemiluminescence tomography[J]. Applied Optics, 2023, 62(19): 5179-5188.
[118]GAO Y, LING C, WU Y, et al. A sensor arrangement optimization method for volumetric tomography: Effective voxel correction maximization(EVCM)[J]. Applied Physics B, 2022, 128(9): 173.

备注/Memo

收稿日期:2023- 12- 26修回日期:2024- 01- 29
基金项目:国家自然科学基金(11927802); 中国博士后科学基金(2023M730168)
作者简介:胡 炜(1994—),女,博士,副研究员,研究领域为背景纹影技术及其在燃烧测量的应用。
通信作者:李敬轩(1984—),男,教授,研究领域为不稳定燃烧的预测、测量和控制。

更新日期/Last Update: 1900-01-01