航天推进技术研究院主办
YAN Song,ZHANG Xiaoguang,ZHANG Zhiwei.High frequency 3D mode shapes characterization of engine pipelines using motion amplification and 3D-DIC technique[J].Journal of Rocket Propulsion,2024,50(06):98-106.[doi:10.3969/j.issn.1672-9374.2024.06.008]
联合运动放大和3D-DIC技术识别发动机管路的高阶三维振型
- Title:
- High frequency 3D mode shapes characterization of engine pipelines using motion amplification and 3D-DIC technique
- 文章编号:
- 1672-9374(2024)06-0098-09
- Keywords:
- 3D-DIC; motion amplification; higher-order modes; liquid rocket engine
- 分类号:
- V434
- 文献标志码:
- A
- 摘要:
- 掌握液体火箭发动机管路的模态特性对于管路的抗疲劳设计是至关重要的。由于发动机的激励频率较高,相应的高阶振型对应的结构位移幅值通常非常小,往往被测量系统的本底噪声所掩盖。采取了一种新的方法,通过对定频激励下立体相机拍摄的振动视频进行运动放大,进而对放大后的图像序列进行三维数字图像相关(3D digital image correlation, 3D-DIC)分析,可以从系统本底噪声以下的位移中识别出结构位移,实现对结构高阶三维振型的精确测量。在合适的放大倍数下,未出现由于运动放大导致的散斑图像对应关系恶化,进而导致3D-DIC计算失败的问题。以悬臂梁为实验对象,采用微型激振器以前三阶固有频率激励结构,从低于本底噪声的位移响应中获得了悬臂梁的前三阶离面振型,与三维激光扫描测振技术(3D scanning laser doppler vibrometer, 3D-SLDV)所得的振型高度吻合。此外,成功地将该技术应用于实际的液体火箭发动机导管的高阶三维振型辨识,获得了3个空间分量的振型结果。该方法结合了运动放大的直观性和3D-DIC的定量分析的优势,对于发动机关键结构在低量级正弦激励下的三维振型分析具有应用价值。
- Abstract:
- Understanding the modal characteristics of the pipelines in liquid rocket engines is crucial for their fatigue-resistant design. Due to the high excitation frequency of the engine, the structural displacement amplitude generated by the corresponding high-frequency mode shape is usually very small, which is often masked by the background noise of the measurement system. A new approach of magnifying the vibration videos captured by a stereo camera under fixed-frequency excitation was adopted. Subsequent three-dimensional digital image correlation(3D-DIC)analysis of the magnified image sequences enables the identification of structural displacements from displacements below the system's background noise level, achieving accurate measurement of high-order three-dimensional modes of the structure. Under appropriate magnification multiples, problems such as the deterioration of the correspondence of speckle images due to motion magnification and subsequent failure of 3D-DIC calculations did not occur. A micro-vibrator was used to excite a cantilever beam at the first three natural frequencies. The first three out-of-plane modes of the cantilever beam from displacement responses below the background noise was obtained. These results highly agree with the modes obtained using 3D scanning laser doppler vibrometer(3D-SLDV)technique. Moreover, this technique was successfully applied to the high-order three-dimensional modal identification of actual liquid rocket engine pipelines, yielding modal results for three spatial components. This method combines the intuitiveness of motion amplification and the quantitative analysis advantages of 3D-DIC. It shows application value for three-dimensional modal analysis of key engine structures under low-magnitude sinusoidal excitation.
参考文献/References:
[1] 李斌, 闫松, 杨宝锋. 大推力液体火箭发动机结构中的力学问题[J]. 力学进展, 2021, 51(4): 831-864.
LI B, YAN S, YANG B F. Mechanical problems of the large thrust liquid rocket engine[J]. Advances in Mechanics, 2021, 51(4): 831-864.
[2]杜大华, 穆朋刚, 田川, 等. 液体火箭发动机管路断裂失效分析及动力优化[J]. 火箭推进, 2018, 44(3): 16-22.
DU D H, MU P G, TIAN C, et al. Failure analysis and dynamics optimization of pipeline for liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(3): 16-22.
[3]高轩, 陈洪恩, 王猛, 等. 基于有限测点的复杂管路全局振动预示方法[J]. 火箭推进, 2022, 48(2): 45-55.
GAO X, CHEN H E, WANG M, et al. A global vibration evaluation method based on information of limited measuring points for a complex pipeline[J]. Journal of Rocket Propulsion, 2022, 48(2): 45-55.
[4]REU P L, MILLER T J. The application of high-speed digital image correlation[J]. Journal of Strain Analysis for Engineering Design, 2008, 43(8): 673-688.
[5]BEBERNISS T, SPOTTSWOOD M, EASON T. High-speed digital image correlation measurements of random nonlinear dynamic response[M]//Conference Proceedings of the Society for Experimental Mechanics Series. New York: Springer New York, 2011.
[6]MOLINA-VIEDMA Á J, LÓPEZ-ALBA E, FELIPE-SESÉ L, et al. Modal parameters evaluation in a full-scale aircraft demonstrator under different environmental conditions using HS 3D-DIC[J]. Materials, 2018, 11(2): 230.
[7]JAVH J, SLAVICˇ J, BOLTEAR M. The subpixel resolution of optical-flow-based modal analysis[J]. Mechanical Systems and Signal Processing, 2017, 88: 89-99.
[8]BEBERNISS T J, EHRHARDT D A. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations[J]. Mechanical Systems and Signal Processing, 2017, 86: 35-48.
[9]SCHMIDT T, TYSON J, GALANULIS K. Pull-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry(part 1)[J]. Experimental Techniques, 2003, 27(3): 47-50.
[10]SCHMIDT T, TYSON J, GALANULIS K. Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry(part II)[J]. Experimental Techniques, 2003, 27(4): 22-26.
[11]HELFRICK M N, NIEZRECKI C, AVITABILE P, et al. 3D digital image correlation methods for full-field vibration measurement[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 917-927.
[12]CHEN Z, ZHANG X M, FATIKOW S. 3D robust digital image correlation for vibration measurement[J]. Applied Optics, 2016, 55(7): 1641-1648.
[13]BEBERNISS T J, EHRHARDT D A. Visible light refraction effects on high-speed stereo digital image correlation measurement of a thin panel in Mach 2 flow[J]. Experimental Techniques, 2021, 45(3): 241-255.
[14]QIAN B X, LIANG J, LI J, et al. Full-field deformation and strain measurement of vehicle body under high-speed impact[J]. Measurement Science and Technology, 2018, 29(9): 095004.
[15]AVITABILE P, NIEZRECKI C, HELFRICK M, et al. Noncontact measurement techniques for model correlation[J]. Sound and Vibration, 2010, 44(1): 8-13.
[16]EHRHARDT D A, ALLEN M S, YANG S F, et al. Full-field linear and nonlinear measurements using continuous-scan laser doppler vibrometry and high speed three-dimensional digital image correlation[J]. Mechanical Systems and Signal Processing, 2017, 86: 82-97.
[17]WADHWA N, RUBINSTEIN M, DURAND F, et al. Phase-based video motion processing[J]. ACM Transactions on Graphics, 2013, 32(4): 1-10.
[18]CHEN J G, WADHWA N, CHA Y J, et al. Modal identification of simple structures with high-speed video using motion magnification[J]. Journal of Sound and Vibration, 2015, 345: 58-71.
[19]YANG Y C, DORN C, MANCINI T, et al. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification[J]. Mechanical Systems and Signal Processing, 2017, 85: 567-590.
[20]YANG Y C, DORN C, MANCINI T, et al. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased(sub-Nyquist), video measurements[J]. Journal of Sound and Vibration, 2017, 390: 232-256.
[21]SIRINGORINGO D M, WANGCHUK S, FUJINO Y. Noncontact operational modal analysis of light poles by vision-based motion-magnification method[J]. Engineering Structures, 2021, 244: 112728.
[22]JAVH J, SLAVICˇ J, BOLTEAR M. High frequency modal identification on noisy high-speed camera data[J]. Mechanical Systems and Signal Processing, 2018, 98: 344-351.
[23]MOLINA-VIEDMA A J, FELIPE-SESÉ L, LÓPEZ-ALBA E, et al. High frequency mode shapes characterisation using digital image correlation and phase-based motion magnification[J]. Mechanical Systems and Signal Processing, 2018, 102: 245-261.
[24]MOLINA-VIEDMA A J, FELIPE-SESÉ L, LÓPEZ-ALBA E, et al. 3D mode shapes characterisation using phase-based motion magnification in large structures using stereoscopic DIC[J]. Mechanical Systems and Signal Processing, 2018, 108: 140-155.
[25]POOZESH P, SARRAFI A, MAO Z, et al. Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry[J]. Journal of Sound and Vibration, 2017, 407: 350-366.
[26]YAN S, LI B, LI F, et al. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique[J]. Aerospace Science and Technology, 2017, 69: 412-418.
备注/Memo
收稿日期:2024- 01- 07修回日期:2024- 06- 05
作者简介:闫 松(1988—),男,博士,高级工程师,研究领域为液体火箭发动机结构动力学、视觉测量技术。