航天推进技术研究院主办
CHEN Jiacheng,LIANG Wendong,LI Ziliang,et al.Experimental investigation of temporal and spatial behaviors in liquid nitrogen cavitating flows[J].Journal of Rocket Propulsion,2024,50(06):116-126.[doi:10.3969/j.issn.1672-9374.2024.06.010]
液氮非定常空化流动时空演化特征试验
- Title:
- Experimental investigation of temporal and spatial behaviors in liquid nitrogen cavitating flows
- 文章编号:
- 1672-9374(2024)06-0116-11
- Keywords:
- liquid nitrogen; cavitating flows; schlieren optical system; density gradient; unsteady evolution
- 分类号:
- V431; TV131.32
- 文献标志码:
- A
- 摘要:
- 基于低温介质空化流动实验装置和高速纹影测量系统,研究了液氮非定常空化流动密度分布的时空演化特征。试验中应用高速摄影技术与纹影测量技术对温度为77 K的液氮在不同空化数下的空穴结构与密度分布进行了综合测量。基于试验结果,分析了初生空化、片状空化以及大尺度的云状空化这3种典型低温空化流型的非定常特性与空穴结构演化。研究结果表明:①通过纹影测量系统捕捉到了在背光试验中观察不到的空化引起的密度梯度结构。②在无空化流动时,液氮经过喉口未发生明显的密度变化,在空化条件下,经过喉口的液氮空化流动中观察到了空化流动的密度梯度,且这一区域出现在附着型空穴上方,起始于喉口,离开空穴时消失; ③空化区域汽液混合物声速远小于液相,局部马赫数增大,介质受到压缩后密度发生改变,产生条纹状密度梯度结构; ④条纹结构区域密度梯度的变化对应于当地空化流动时空演化特征。
- Abstract:
- The objective of this paper is to build a schlieren optical system based on the experimental device for cavitation flow in cryogenic fluids, and to study the spatial and temporal characteristics of the density distribution in liquid nitrogen cavitating flows. In the experiment, the structure and density distribution of liquid nitrogen cavities at different cavitation numbers for 77 K were measured by applying high-speed photography and chlieren technology. The unsteady behaviors of incipient cavitation, sheet cavitation, and large-scale cloud cavitation in liquid nitrogen were investigated. The results show that: ① The schlieren optical system can capture the cavitation-induced density gradient that is not observed in backlighting experiments. ② The significant change of density in liquid nitrogen is not observed under the non-cavitation condition. The rectangular structures are observed in the cavitating flows. This demonstrates that the density of the liquid phase changes. The rectangular structure appears above the attached cavity, begins at the throat, and disappears when leaving the cavity. ③ The sound velocity of the vapor-liquid mixture in the cavitation region is much smaller than that of the liquid phase, and the local Mach number increases. The density of the fluid changes as it is compressed, producing a striated density gradient structure. ④ The unsteady characteristics of the rectangular structures are consistent with the cavitating flows.
参考文献/References:
[1] WEI A B, YU L Y, QIU L M, et al. Cavitation in cryogenic fluids: A critical research review[J]. Physics of Fluids, 2022, 34(10): 101303.
[2]CHEN T R, MU Z D, CHEN J C, et al. Numerical investigations on the mechanisms of the tip leakage vortex cavitation development in a cryogenic inducer with large eddy simulation[J]. Physics of Fluids, 2023, 35(7): 073328.
[3]项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85.
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85.
[4]HUANG B, YOUNG Y L, WANG G Y, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2013, 135(7): 071301.
[5]BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995.
[6]DULAR M, COUTIER-DELGOSHA O. Thermodynamic effects during growth and collapse of a single cavitation bubble[J]. Journal of Fluid Mechanics, 2013, 736: 44-66.
[7]PHAN T H, KADIVAR E, NGUYEN V T, et al. Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions[J]. Physics of Fluids, 2022, 34(2): 023318.
[8]CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76.
[9]李龙贤, 丁振晓, 吴玉珍. 基于热力学效应修正的诱导轮空化模型研究[J]. 火箭推进, 2019, 45(5): 52-58.
LI L X, DING Z X, WU Y Z. Research oncryogenicinducer cavitation model modified by thermodynamic effect[J]. Journal of Rocket Propulsion, 2019, 45(5): 52-58.
[10]SARO'SDY L R, ACOSTA A J. Note on observations of cavitation in different fluids[J]. Journal of Basic Engineering, 1961, 83(3): 399-400.
[11]陈家成, 陈泰然, 梁文栋, 等. 收缩扩张管内液氮空化流动演化过程试验研究[J]. 力学学报, 2022,54(5): 1242-1256.
CHEN J C, CHEN T R, LIANG W D, et al. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256.
[12]FRANC J P, REBATTET C, COULON A. An experimental investigation of thermal effects in a cavitating inducer[J]. Journal of Fluids Engineering, 2004, 126(5): 716-723.
[13]YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278.
[14]CERVONE A, TESTA R, BRAMANTI C, et al. Thermal effects on cavitation instabilities in helical inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899.
[15]GUSTAVSSON J P R, DENNING K C, SEGAL C. Hydrofoil cavitation under strong thermodynamic effect[J]. Journal of Fluids Engineering, 2008, 130(9): 1.
[16]ZHU J K, XIE H J, FENG K S, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube[J]. International Journal of Heat and Mass Transfer, 2017, 112: 544-552.
[17]CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630.
[18]LIANG W D, CHEN T R, WANG G Y, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121537.
[19]OHIRA K, NAKAYAMA T, NAGAI T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles[J]. Cryogenics, 2012, 52(1): 35-44.
[20]SETTLES G S. Schlieren and Shadowgraph Techniques[M]. Berlin: Springer, 2001.
[21]SETTLES G, COVERT E. Schlieren and shadowgraph techniques: Visualizing phenomena in transport media[J]. Applied Mechanics Reviews, 2002, 55(4): 76-77.
[22]黄强锋. 基于红外纹影层析技术的流场三维重建研究[D]. 南昌: 南昌航空大学, 2013.
HUANG Q F.Study on three-dimensional reconstruction of flow field based on infrared schlieren tomography[D]. Nanchang: Nanchang Hangkong University, 2013.
[23]孟晟, 杨臧健, 王明晓, 等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学, 2015, 29(4): 65-69.
MENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 65-69.
[24]胡锐. 基于纹影法的温度场分布测量技术研究[D]. 西安: 西安工业大学, 2018.
HU R.Research on measurement technology of temperature field distribution based on schlieren method[D]. Xi'an: Xi'an Technological University, 2018.
[25]HUANG G H, ZHANG M D, HAN L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble[J]. Ultrasonics Sonochemistry, 2021, 72: 105440.
[26]黄训铭, 谢爱民, 郑蕾, 等. 聚集纹影图像密度场处理技术[J]. 四川兵工学报, 2015, 36(6): 77-81.
HUANG X M, XIE A M, ZHENG L, et al. Technique research of focusing schlieren images processing for getting flow density[J]. Journal of Sichuan Ordnance, 2015, 36(6): 77-81.
[27]MAUGER C, MÉÈS L, MICHARD M, et al. Shadowgraph, Schlieren and interferometry in a 2D cavitating channel flow[J]. Experiments in Fluids, 2012, 53(6): 1895-1913.
[28]LEMMON E W, HUBER M L,MCLINDEN M O. NIST standard reference database 23: Reference fluid thermodynamic and transport properties(REFPROP),version 9.0[EB/OL]. https://www.mendeley.com/catalogue/b732ee76-72a4-3584-9ba4-2c526442c822/, 2010.
相似文献/References:
[1]李雨濛,陈 晖,项 乐,等.水翼非定常空化流动中湍流模型研究[J].火箭推进,2019,45(06):29.
LI Yumeng,CHEN Hui,XIANG Le,et al.Study on turbulent model of unsteady cavitating flow around hydrofoil[J].Journal of Rocket Propulsion,2019,45(06):29.
备注/Memo
收稿日期:2024- 01- 16修回日期:2024- 08- 14
基金项目:国家自然科学基金(52009001); 北京理工大学科技创新计划(2024CX06078); 重庆市自然科学基金(cstc2021jcyj-msxmX1046)
作者简介:陈家成(1997—),男,博士,研究领域为低温空化与空泡动力学。
通信作者:陈泰然(1990—),男,博士,副教授,研究领域为低温相变与传热。