PDF下载 分享
[1]陈家成,梁文栋,李子亮,等.液氮非定常空化流动时空演化特征试验[J].火箭推进,2024,50(06):116-126.[doi:10.3969/j.issn.1672-9374.2024.06.010]
 CHEN Jiacheng,LIANG Wendong,LI Ziliang,et al.Experimental investigation of temporal and spatial behaviors in liquid nitrogen cavitating flows[J].Journal of Rocket Propulsion,2024,50(06):116-126.[doi:10.3969/j.issn.1672-9374.2024.06.010]
点击复制

液氮非定常空化流动时空演化特征试验

参考文献/References:

[1] WEI A B, YU L Y, QIU L M, et al. Cavitation in cryogenic fluids: A critical research review[J]. Physics of Fluids, 2022, 34(10): 101303.
[2]CHEN T R, MU Z D, CHEN J C, et al. Numerical investigations on the mechanisms of the tip leakage vortex cavitation development in a cryogenic inducer with large eddy simulation[J]. Physics of Fluids, 2023, 35(7): 073328.
[3]项乐, 李春乐, 许开富, 等. 诱导轮超同步旋转空化传播机理[J]. 火箭推进, 2022, 48(2): 76-85.
XIANG L, LI C L, XU K F, et al. Inducer super-synchronous rotating cavitation propagation mechanism[J]. Journal of Rocket Propulsion, 2022, 48(2): 76-85.
[4]HUANG B, YOUNG Y L, WANG G Y, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2013, 135(7): 071301.
[5]BRENNEN C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995.
[6]DULAR M, COUTIER-DELGOSHA O. Thermodynamic effects during growth and collapse of a single cavitation bubble[J]. Journal of Fluid Mechanics, 2013, 736: 44-66.
[7]PHAN T H, KADIVAR E, NGUYEN V T, et al. Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions[J]. Physics of Fluids, 2022, 34(2): 023318.
[8]CHEN T R, CHEN H, LIU W C, et al. Unsteady characteristics of liquid nitrogen cavitating flows in different thermal cavitation mode[J]. Applied Thermal Engineering, 2019, 156: 63-76.
[9]李龙贤, 丁振晓, 吴玉珍. 基于热力学效应修正的诱导轮空化模型研究[J]. 火箭推进, 2019, 45(5): 52-58.
LI L X, DING Z X, WU Y Z. Research oncryogenicinducer cavitation model modified by thermodynamic effect[J]. Journal of Rocket Propulsion, 2019, 45(5): 52-58.
[10]SARO'SDY L R, ACOSTA A J. Note on observations of cavitation in different fluids[J]. Journal of Basic Engineering, 1961, 83(3): 399-400.
[11]陈家成, 陈泰然, 梁文栋, 等. 收缩扩张管内液氮空化流动演化过程试验研究[J]. 力学学报, 2022,54(5): 1242-1256.
CHEN J C, CHEN T R, LIANG W D, et al. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256.
[12]FRANC J P, REBATTET C, COULON A. An experimental investigation of thermal effects in a cavitating inducer[J]. Journal of Fluids Engineering, 2004, 126(5): 716-723.
[13]YOSHIDA Y, KIKUTA K, HASEGAWA S, et al. Thermodynamic effect on a cavitating inducer in liquid nitrogen[J]. Journal of Fluids Engineering, 2007, 129(3): 273-278.
[14]CERVONE A, TESTA R, BRAMANTI C, et al. Thermal effects on cavitation instabilities in helical inducers[J]. Journal of Propulsion and Power, 2005, 21(5): 893-899.
[15]GUSTAVSSON J P R, DENNING K C, SEGAL C. Hydrofoil cavitation under strong thermodynamic effect[J]. Journal of Fluids Engineering, 2008, 130(9): 1.
[16]ZHU J K, XIE H J, FENG K S, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube[J]. International Journal of Heat and Mass Transfer, 2017, 112: 544-552.
[17]CHEN T R, CHEN H, LIANG W D, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition[J]. International Journal of Heat and Mass Transfer, 2019, 132: 618-630.
[18]LIANG W D, CHEN T R, WANG G Y, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121537.
[19]OHIRA K, NAKAYAMA T, NAGAI T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles[J]. Cryogenics, 2012, 52(1): 35-44.
[20]SETTLES G S. Schlieren and Shadowgraph Techniques[M]. Berlin: Springer, 2001.
[21]SETTLES G, COVERT E. Schlieren and shadowgraph techniques: Visualizing phenomena in transport media[J]. Applied Mechanics Reviews, 2002, 55(4): 76-77.
[22]黄强锋. 基于红外纹影层析技术的流场三维重建研究[D]. 南昌: 南昌航空大学, 2013.
HUANG Q F.Study on three-dimensional reconstruction of flow field based on infrared schlieren tomography[D]. Nanchang: Nanchang Hangkong University, 2013.
[23]孟晟, 杨臧健, 王明晓, 等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学, 2015, 29(4): 65-69.
MENG S, YANG Z J, WANG M X, et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 65-69.
[24]胡锐. 基于纹影法的温度场分布测量技术研究[D]. 西安: 西安工业大学, 2018.
HU R.Research on measurement technology of temperature field distribution based on schlieren method[D]. Xi'an: Xi'an Technological University, 2018.
[25]HUANG G H, ZHANG M D, HAN L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble[J]. Ultrasonics Sonochemistry, 2021, 72: 105440.
[26]黄训铭, 谢爱民, 郑蕾, 等. 聚集纹影图像密度场处理技术[J]. 四川兵工学报, 2015, 36(6): 77-81.
HUANG X M, XIE A M, ZHENG L, et al. Technique research of focusing schlieren images processing for getting flow density[J]. Journal of Sichuan Ordnance, 2015, 36(6): 77-81.
[27]MAUGER C, MÉÈS L, MICHARD M, et al. Shadowgraph, Schlieren and interferometry in a 2D cavitating channel flow[J]. Experiments in Fluids, 2012, 53(6): 1895-1913.
[28]LEMMON E W, HUBER M L,MCLINDEN M O. NIST standard reference database 23: Reference fluid thermodynamic and transport properties(REFPROP),version 9.0[EB/OL]. https://www.mendeley.com/catalogue/b732ee76-72a4-3584-9ba4-2c526442c822/, 2010.

相似文献/References:

[1]李雨濛,陈 晖,项 乐,等.水翼非定常空化流动中湍流模型研究[J].火箭推进,2019,45(06):29.
 LI Yumeng,CHEN Hui,XIANG Le,et al.Study on turbulent model of unsteady cavitating flow around hydrofoil[J].Journal of Rocket Propulsion,2019,45(06):29.

备注/Memo

收稿日期:2024- 01- 16修回日期:2024- 08- 14
基金项目:国家自然科学基金(52009001); 北京理工大学科技创新计划(2024CX06078); 重庆市自然科学基金(cstc2021jcyj-msxmX1046)
作者简介:陈家成(1997—),男,博士,研究领域为低温空化与空泡动力学。
通信作者:陈泰然(1990—),男,博士,副教授,研究领域为低温相变与传热。

更新日期/Last Update: 1900-01-01