PDF下载 分享
[1]常莹,杜永清,陈晖,等.应用于航天发动机的镀金光纤光栅高温动应变测量技术[J].火箭推进,2024,50(06):127-134.[doi:10.3969/j.issn.1672-9374.2024.06.011]
 CHANG Ying,DU Yongqing,CHEN Hui,et al.Application of gold-plated grating in high temperature dynamic strain measurement for aerospace engines[J].Journal of Rocket Propulsion,2024,50(06):127-134.[doi:10.3969/j.issn.1672-9374.2024.06.011]
点击复制

应用于航天发动机的镀金光纤光栅高温动应变测量技术

参考文献/References:

[1] 王凯, 王东方, 刘友强, 等. 变形高温合金在液体火箭发动机中的应用进展及展望[J]. 火箭推进, 2024, 50(1): 57-66.
WANG K, WANG D F, LIU Y Q, et al. Application and prospect of wrought superalloy in liquid rocket engine[J]. Journal of Rocket Propulsion, 2024, 50(1): 57-66.
[2]赵万明. 液体火箭发动机地面试验中关键参数测量方案设计[J]. 火箭推进, 2002, 28(1): 27-32.
ZHAO W M.Design of key parameters measurement scheme in liquid rocket engine ground test[J]. Journal of Rocket Propulsion, 2002, 28(1): 27-32.
[3]柴葳, 郝庆瑞, 宝剑光. 光纤温度/应变复合传感器及其在800 ℃高温下的应用[J]. 航空科学技术, 2020, 31(2): 66-71.
CHAI W, HAO Q R, BAO J G. Integrated optical fibre temperature/strain sensor subjected to the 800 ℃ conditions[J]. Aeronautical Science & Technology, 2020, 31(2): 66-71.
[4]李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文), 2022, 15(4): 609-624.
LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624.
[5]王福川, 刘畅. 高温光纤传感器在热结构温度测试中的应用[J]. 自动化应用, 2023(9): 172-174.
WANG F C, LIU C. Application of high temperature optical fiber sensor in temperature measurement of thermal structure[J]. Automation Application, 2023(9): 172-174.
[6]孟松鹤, 杜翀, 解维华, 等. 高温光纤传感器在热结构温度和应变测试中的应用[J]. 固体火箭技术, 2013, 36(5): 701-705.
MENG S H, DU C, XIE W H, et al. Application of high-temperature optical fiber sensor in temperature and strain testing of hot structure[J]. Journal of Solid Rocket Technology, 2013, 36(5): 701-705.
[7]吴家骥.基于光纤F-P传感器高温应变测量技术研究[D].西安:西北工业大学,2021.
WU J J.Research on high temperature strain measurement technology based on fiber optic F-P sensor [D]. Xi'an: Northwest Polytechnical University, 2021.
[8]田琴. 光纤高温应变双参量同时精确测量传感器关键技术研究[D]. 西安: 西北大学, 2020.
TIAN Q. Research on key technologies of optical fiber dual-parameter simultaneous accurate measurement sensor for high temperature strain[D]. Xi'an: Northwest University, 2020.
[9]杨杭洲, 刘鑫, 南朋玉, 等. 光纤高温应变传感器研究进展(特邀)[J]. 光子学报, 2022, 51(10): 1006002.
YANG H Z, LIU X, NAN P Y, et al. Progress in research of optical fiber high temperature and strain sensor(invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1006002.
[10]LI G Y, GUAN B O. The strain response of chemical composition gratings at high temperatures[J]. Measurement Science and Technology, 2009, 20(2): 025204.
[11]张兴, 王俊杰, 彭伟华. 内嵌式微腔光纤法布里-珀罗应变传感器的研制[J]. 武汉理工大学学报, 2016, 38(1): 80-83.
ZHANG X, WANG J J, PENG W H. Research on embedded micro cavity optical fiber fabry-perot strain sensor[J]. Journal of Wuhan University of Technology, 2016, 38(1): 80-83.
[12]刘繄, 李志强, 谭跃刚, 等. 光纤光栅高温应变测量及工作温区调控方法[J]. 压电与声光, 2023, 45(4): 579-583.
LIU Y, LI Z Q, TAN Y G, et al. High temperature strain measurement and working temperature zone regulation method of fiber Bragg grating[J]. Piezoelectrics & Acoustooptics, 2023, 45(4): 579-583.
[13]杨润涛. 基于光纤传感的高超声速飞行器表面温度、应变及压力监测技术研究[D]. 合肥: 合肥工业大学, 2020.
YANG R T.Research on surface temperature, strain and pressure monitoring technology of hypersonic vehicle based on optical fiber sensing[D]. Hefei: Hefei University of Technology, 2020.
[14]江毅, 贾景善, 付雷, 等. 外腔式光纤Fabry-Perot干涉型高温应变传感器[J]. 光学技术, 2017, 43(5): 423-426.
JIANG Y, JIA J S, FU L, et al. A high-temperature strain sensor based on extrinsic Fabry-Perot interferometer[J]. Optical Technique, 2017, 43(5): 423-426.
[15]丁旭东, 张钰民, 宋言明, 等. 纯石英芯光纤光栅高温应变响应特性[J]. 中国激光, 2017, 44(11): 1106003.
DING X D, ZHANG Y M, SONG Y M, et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain[J]. Chinese Journal of Lasers, 2017, 44(11): 1106003.
[16]LAAROSSI I, ROLDÁN-VARONA P, QUINTELA-INCERA M A, et al. Ultrahigh temperature and strain hybrid integrated sensor system based on Raman and femtosecond FBG inscription in a multimode gold-coated fiber[J]. Optics Express, 2019, 27(26): 37122.
[17]丁宝艳, 赵强, 王相飞, 等. 飞秒激光制备光纤布拉格光栅研究进展[J]. 光通信研究, 2022(3): 31-38.
DING B Y, ZHAO Q, WANG X F, et al. Review of fiber Bragg grating fabricated by femtosecond laser processing[J]. Study on Optical Communications, 2022(3): 31-38.
[18]吕瑞东, 陈涛, 范春松, 等. 飞秒激光制备光纤Bragg光栅在光纤激光器中的应用[J]. 激光与光电子学进展, 2020, 57(11): 111426.
LYU R D, CHEN T, FAN C S, et al. Application of fiber lasers based on femtosecond laser inscribed fiber Bragg gratings[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111426.
[19]ECKE W, LATKA I, WILLSCH R, et al. Fibre optic sensor network for spacecraft health monitoring[J]. Measurement Science and Technology, 2001, 12(7): 974-980.
[20]BURGMEIER J, SCHIPPERS W, EMDE N, et al. Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines[J]. Applied Optics, 2011, 50(13): 1868-1872.
[21]LIU N L, LIU S H, LU P X. A femtosecond-laser-induced fiber Bragg grating with supermode resonances for sensing applications[J]. Chinese Physics Letters, 2014, 31(9): 094204.
[22]廖常锐, 何俊, 王义平. 飞秒激光制备光纤布拉格光栅高温传感器研究[J]. 光学学报, 2018, 38(3): 123-131.
LIAO C R, HE J, WANG Y P. Study on high temperature sensors based on fiber Bragg gratings fabricated by femtosecond laser[J]. Acta Optica Sinica, 2018, 38(3): 123-131.
[23]YIN S Z. Dual-wavelength FBG inscribed by femtosecond laser for simultaneous measurement of high temperature and strain[J]. Chinese Optics Letters, 2009, 7(8): 675-678.
[24]陈梓泳, 何俊, 徐锡镇, 等. 飞秒激光逐点法制备光纤布拉格光栅高温传感器阵列[J]. 光学学报, 2021, 41(13): 15-23.
CHEN Z Y, HE J, XU X Z, et al.Fabrication of fiber Bragg grating high temperature sensor array by femtosecond laser point-by-point method[J]. Acta Optica Sinica, 2021, 41(13): 15-23.
[25]曹后俊, 司金海, 陈涛, 等. 飞秒激光制备异质光纤光栅的温度应变双参数传感器[J]. 中国激光, 2018, 45(7): 0702009.
CAO H J, SI J H, CHEN T, et al. Temperature and strain dual-parameter heterogeneous fiber Bragg grating sensor made by femtosecond laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702009.

备注/Memo

收稿日期:2024- 06- 02修回日期:2024- 10- 29
基金项目:国家装备预研基金(6140923020303)
作者简介:常 莹(1983—),女,博士,研究员,研究领域为先进测试技术,光纤传感技术。

更新日期/Last Update: 1900-01-01