航天推进技术研究院主办
GUO Jing,KONG Fan-chao,HU Xu-kun.esearch on plume flow of space thrusters[J].Journal of Rocket Propulsion,2014,40(06):46-50.
空间发动机羽流研究技术发展综述
- Title:
- esearch on plume flow of space thrusters
- 分类号:
- V439-34
- 文献标志码:
- A
- 摘要:
- 首先介绍了目前进行空间发动机羽流研究的必要性,同时说明地面试验和数值模拟方法都是研究空间发动机羽流特性的有效手段,两者缺一不可。在此基础上,总结了国内外羽流地面试验关键技术和发展状况。然后,分别总结了国内外最具代表性的空间发动机羽流试验台的组成、真空抽吸方式、主要技术指标和特点,包括美国的J2-A试验舱和CHAFF-IV试验舱,欧洲的CCG羽流污染试验舱和STG低温氦冷羽流试验舱,中国的KM系列空间环境模拟器和PES地面羽流试验台。最后,介绍了与羽流地面试验相关的数值模拟技术的发展,总结了进行羽流数值模拟的模型,重点介绍了常用的DSMC方法的典型应用和基于此方法所开发软件的情况,并针对大密度羽流场和电推进发动机羽流场的特点分别总结了其进行羽流场计算的方法。
- Abstract:
- The necessity of plume flow research of space thrusters is introduced. At the same time, plume test and numerical simulation methods which are the two valid ways to research space engine's plume characters are elaborated. Then the key technique and development of plume test are summarized. Afterwards, the compositions, vacuum pumping methods, main specifications and characteristics of representative plume test beds including J2-A chamber and CHAFF-IV facility of USA, CCG chamber and STG chamber of European, KM space simulators and PES chamber of China are summarized. Finally, development of the numerical simulation technology related to plume test on ground is introduced by overviewing numerical models of plume, focusing on DSMC method and its software, presenting plume computational methods of high density plume and electrical propulsion thruster plume. The technology of test and numerical simulation of space thruster plume is helpful to research the plume of space
参考文献/References:
[1]HUFENBACH B, DETTLEFF G, BOETTCHER R D, et al. European activities in plume testing, AIAA 97-33[R]. USA: AIAA, 1997.
[2]程晓丽, 李明智, 毛铭芳, 等. 高空羽流场的DSMC计算和试验研究[J]. 空气动力学学报, 2002, 20(1), 9-14.
[3]陈琳英, 宋仁旺. 离子推力器羽流特性及其污染分析[J]. 上海航天, 2005 (4): 36-40.
[4]范周琴. 电推进发动机羽流流场DSMC/PIC混合算法研究[D]. 长沙: 国防科学大学, 2006.
[5]李殿东. 76 km高空环境模拟试验舱的研制[J]. 真空, 2002, 39(5): 41-45.
[6]黄本诚. KM6载人航天器空间环境试验设备[J]. 中国空间科学与技术, 2002, 22(3): 1-6.
[7]郭霄峰. 液体火箭发动机试验[M]. 北京: 中国宇航出版社, 2005.
[8]ANDREW D K. An overview of ground based spacecraft thruster interaction studies: facility design issues, AIAA 00-0463[R]. USA: AIAA, 2000.
[9]DETTLEFF G, KLAUS P. Initial experimental results from the new DLR-high vacuum plume test facility STG, AIAA 93-3297[R]. USA: AIAA, 1997.
[10]GEORG D, KLAUS P. Initial experimental results from the new DLR-High vaccum plume test facility STG,
AIAA 97-3297[R]. USA: AIAA, 1997.
[11]张建华, 贺碧蛟, 蔡国飙, 等. 卫星姿控发动机喷管羽流撞击效应试验[J]. 空气动力学学报, 2007, 25(2): 250- 255.
[12]肖泽娟, 程惠尔, 周伟敏, 等. 空间发动机羽流场的试验研究[J]. 空气动力学学报, 2008, 26(4): 480-485.
[13]王文龙, 周建平, 蔡国飙, 等. 羽流效应地面模拟试验系统关键技术发展[J]. 航空动力学报, 2012, 27(4): 900- 906.
[14]HILL J A F, DRAPER J S. Analytical approximation for the flow from a nozzle into a vacuum[J]. Journal of Space- craft and Rocket, 1966, (3): 1552-1554.
[15]SIMONS G A. Effect of nozzle boundary layers on rocket exhaust plumes[J]. AIAA Journal, 1972, 10(11): 1534- 1535.
[16]HOFFMANN R J, KAWASAKI A, TRINKS H, et al. The CONTAM 3.2 plume flow field analysis and contamination prediction computer program: analysis model and experimental verification, AIAA 85-0928[R]. USA: AIAA, 1985.
[17]COOPER B P J. Computational scheme for calculating the plume backflow region[J]. Journal of Spacecraft, 1979, 16(4): 284-286.
[18]JENINS R M, CIUCCI A, COCHRAN J E J. Simplified model for calculation of backflow contamination from rocket exhausts in vacuum[J]. Journal of Spacecraft and Rockets, 1994, 31(2): 265-270.
[19]BIRD G A. Direct simulation of the Boltzmann equation [J]. Physics of Fluids, 1970,13(11): 2676-2679.
[20]BIRD G A. Breakdown of continuum flow in free jets and rocket plumes[C]// 12th International Symposium on Rarefied Gas Dynamics. [S.l.]: [s.n.], 1980: 681-694.
[21]DOO Y C, NELSON D A. Direct Monte Carlo simulation of small bipropellant engine plumes, ADA177079 [R]. USA: ADA, 1987.
[22]FURLANI T R, LORDI J A. Implementation of the direct simulation Monte Carlo method for an exhaust plume flow field in a parallel computing environment, AIAA 88-2736[R]. USA: AIAA, 1988.
[23]GIMELSHEIN S F, BOYD I D, IVANOV M S. Mode- ling of internal energy transfer in plume flows of polyatomic, AIAA 99-0738[R]. USA: AIAA, 1999.
[24]GALLIS M A,TORCZYNSKI J R,RADER D J. An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method[J]. Physics of Fluids, 2001, 13(11): 3482- 3492.
[25]BURT J M, BOYD I D. Development of a two-way coupled model for two-phase rarefied flows, AIAA 04-1351[R]. USA: AIAA, 2004.
[26]WILMOTH R G, CARLSON A B, LEBEAU G J. DSMC grid methodologies for computing low-density, hyperso- nic flows about reusable launch vehicles, AIAA 96-1812[R]. USA: AIAA, 1996.
[27]BOYLES K A, LEBEAU G J, LUMPKIN III F E. The use of virtual subcells in DSMC analysis of orbiter aerodynamics at high altitudes upon reentry, AIAA 03-1030[R]. USA: AIAA, 2003.
[28]LEBEAU G J, BOYLES K A, LUMPKIN III F E. Virtual sub-cells for the direct simulation Monte Carlo method, AIAA 03-1031[R]. USA: AIAA, 2003.
[29]IVANOV M S, MARKELOVF G N, GIMELSHEIN S F. Statistical simulation of reactive rarefied flows: numerical approach and applications, AIAA 98-2669[R]. USA: AIAA, 1998.
[30]DIETRICH S, BOYD I D. A scalar optimized parallel implementation of the DSMC method, AIAA 94-355[R]. USA: AIAA, 1994.
[31]DIETRICH S, BOYD I D. Parallel implement at ion on the IBM SP-2 of the direct simulation Monte Carlo method, AIAA 95-2029[R]. USA: AIAA, 1995.
[32]GIORDANO D, IVANOV M, KASHKOVSKY A, et al. Application of DSMC to the study of satellite thruster plumes, AIAA 97-2538[R]. USA: AIAA, 1997.
[33]GATSONIS N A, NANSON A R, LEBEAU G J. Navier- Stokes/DSMC Simulations of cold-Gas nozzle/plume flows and flight data comparisons, AIAA 99-3456[R]. USA: AIAA, 1999.
[34]GEORGE J D. A combined CFD-DSMC method for numerical simulation of nozzle plume flows[D]. USA: Cornell University, 2000.
[35]钱中, 王平阳, 杜朝辉. 稀薄等离子体羽流稳态流动粒子模拟[J]. 上海交通大学学报, 2009, 43(2): 165-168.
[36]尹乐, 周进, 杨乐, 等. 脉冲等离子体推力器羽流的粒子模拟[J]. 国防科技大学学报, 2008, 30(6): 6-9.
[37]GATSONIS N, ZWAHLEN J, WHEELOCK A, et al. Pulsed plasma thruster plume investigation using a
current-mode quadruple probe method[J]. Journal of Propulsion and Power, 2004, 20(2): 243-248.
相似文献/References:
[1]张乾鹏,康小录,余水淋.霍尔推力器羽流离子能量实验研究[J].火箭推进,2010,36(03):10.
r.Experimental investigations of ion energy distribution in the plasma exhaust plume of a hall thruste[J].Journal of Rocket Propulsion,2010,36(06):10.
[2]陈琳英,宋仁旺.离子火箭发动机羽流特性分析[J].火箭推进,2010,36(04):7.
Chen Linying,Song Renwang.Analysis on plume characteristics of ion thrusters[J].Journal of Rocket Propulsion,2010,36(06):7.
[3]汪礼胜,唐德礼.阳极层推力器的研究现状与发展趋势[J].火箭推进,2006,32(01):24.
Wang Lisheng,Tang Deli.The state of arts of thruster with anode layer[J].Journal of Rocket Propulsion,2006,32(06):24.
[4]顾左,郑茂繁,陈战东,等.氙离子火箭发动机的羽流及其污染分析[J].火箭推进,2004,(02):19.
备注/Memo
收稿日期:2014-08-13;修回日期:2014-08-29 作者简介:郭敬(1979—),女,博士,高级工程师,研究领域为液体火箭发动机试验技术