航天推进技术研究院主办
Chen Huil,Zhang Enzha0,Tan Yonghua,et al.Geometry design and analysis oIthel high-speed rotational plate inducer[J].Journal of Rocket Propulsion,2009,35(03):1-5.
高速平板诱导轮的结构设计与分析
- Title:
- Geometry design and analysis oIthel high-speed rotational plate inducer
- Keywords:
- liquid propellant rocket engine; inducer; geometry design
- 分类号:
- V434.21
- 文献标志码:
- A
- 摘要:
- 诱导轮是液体火箭发动机(LPRE)中重要的组成部分,它能有效地提高主泵的 抽吸性能。首先介绍了LPRE诱导轮的几种典型结构型式,然后阐述了LPRE诱导轮的基本概 念和设计原理,迸一步推荐和分析了高速平板诱导轮几个重要结构参数的设计准则.最后按 照设计方法设计了用于某液体火箭发动机的一台高速诱导轮,CFD计算表明它具有较好的扬 程性能和抗汽蚀特性。
- Abstract:
- The inducer is a key component of the liquid propellant rocket engine(LPRE), which can effectively raise the suction performance of the main pump.The basic types of LPRE in. ducer were introduced.The basic concept and design theory were then presented.Furthermore,the design criteria of some important geometry parametells of the high—speed rotational plate inducer were recommended and analyzed.Finally,a high-speed rotational inducer for a LPRE was designed by this method.The CFD results indicated it had a good head performance and cavitation charaete- istic.
参考文献/References:
[l]Jackson J K.Liquid Pocket Engine Turbopump Inducers
[R].NASA SP-8052,1971.
[2]Brennen C E.Hydrodynamics of Pumps[M].Concepts ETL
Inc.and Oxford University Press,1994.
[3]休泽尔.液体火箭发动机现代工程设计[M].朱宁昌等
译.北京:中国宇航出版社。2004.
[4]Wang Leqin,Zhu Zuchao,Xie Ping.Design Theory and
Engineering Implementation on Variable-Pitch Inducer of
High-Speed Centrifugal Pump[C].Proceedings of the
Third International Conference on Pumps and Fans,1998.
[5]陈晖,张恩昭,李斌.诱导轮旋转空化诱发不稳定现象的
研究与进展[J].水泵技术,2006,(2):1-5.
[6]Petrov V.Cavitation Characteristics of High-Rotational
Centrifugal Pumps with Inducers[R].Mashinostroyenie,197%
[7]自东安.涡轮泵超低工况性能研究[M].火箭推进,2008,
34(3):13-16.
相似文献/References:
[1]郑 伟,李护林,陈新红.激光快速成形技术在液体动力领域的应用前景[J].火箭推进,2015,41(06):1.
ZHENG Wei,LI Hulin,CHEN Xinhong.Application prospect of laser rapid prototyping
technology in the field of liquid power[J].Journal of Rocket Propulsion,2015,41(03):1.
[2]郭 敬,宋晶晶,孔凡超.发动机推进剂增压输送系统建模仿真技术综述[J].火箭推进,2015,41(05):1.
GUO Jing,SONG Jingjing,KONG Fanchao.Overview of modeling and simulation technology
for propellant pressurization feed system
of liquid rocket engine[J].Journal of Rocket Propulsion,2015,41(03):1.
[3]于 康,谢荣华,陈晓江.表面张力贮箱电子束焊接工艺研究[J].火箭推进,2015,41(05):89.
YU Kang,XIE Ronghua,CHEN Xiaojiang.Study on electron beam welding process
for surface tension tank[J].Journal of Rocket Propulsion,2015,41(03):89.
[4]刘中华,苏 晨,汪军安,等.气路膜片设计研究[J].火箭推进,2015,41(05):95.
LIU Zhonghua,SU Chen,WANG Junan,et al.Design and study of pneumatic diaphragm in gas circuit[J].Journal of Rocket Propulsion,2015,41(03):95.
[5]薛 薇,蔡震宇,曹红娟,等.基于可视化平台的液氢/液氧火箭发动机核心部件质量计算[J].火箭推进,2015,41(04):61.
XUE wei,CAI Zhenyu,CAO Hongjuan,et al.Mass calculation of key assembly units in
LH2/ LOX rocket engine based on visual interface[J].Journal of Rocket Propulsion,2015,41(03):61.
[6]穆朋刚,童 飞,蒲光荣,等.温度对贮箱增压系统的影响分析[J].火箭推进,2015,41(04):74.
MU Penggang,TONG Fei,PU Guangrong,et al.Influence of temperature on tank pressurization system[J].Journal of Rocket Propulsion,2015,41(03):74.
[7]高朝辉,刘 宇,肖 肖,等.垂直着陆重复使用运载火箭对动力技术的挑战[J].火箭推进,2015,41(03):1.
GAO Zhao-hui,LIU Yu,et al.Challenge to propulsion technology for vertical
landing reusable launch vehicle[J].Journal of Rocket Propulsion,2015,41(03):1.
[8]申智帅,等.气动增压器技术及其在空间推进系统的应用[J].火箭推进,2015,41(03):15.
SHEN Zhi-shuai,RUAN Hai-jun,et al.Pneumopump technology and its application
in space propulsion system[J].Journal of Rocket Propulsion,2015,41(03):15.
[9]张 翔,徐洪平,安雪岩,等.液体火箭发动机稳态运行故障
数据聚类分析研究0[J].火箭推进,2015,41(02):118.
ZHANG Xiang,XU Hong-ping,AN Xue-yan,et al.Clustering analysis for fault data in steady process of
liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(03):118.
[10]窦 唯,闫宇龙,金志磊,等.某发动机涡轮泵转子高温超速/疲劳试验研究[J].火箭推进,2015,41(01):15.
DOU Wei,YAN Yu-long,JIN Zhi-lei,et al.Fatigue experiment of turbo-pump rotor at
over-speed and high temperature condition[J].Journal of Rocket Propulsion,2015,41(03):15.
备注/Memo
收稿日期:2009-03—23;修回日期:2009-05—10。 作者简介:陈晖(197¨),男,博士,研究领域为流体机械。