航天推进技术研究院主办
LIU Shang LIU Hong-jun WANG Hai-yan.Frequency characteristic analysis for LOX feed system of oxidizer-rich preburner[J].Journal of Rocket Propulsion,2013,39(02):12-18.
富氧燃气发生器液氧供应系统频率特性分析
- Title:
- Frequency characteristic analysis for LOX feed system of oxidizer-rich preburner
- 文章编号:
- 1672-9374(2013)02-0012-07
- 分类号:
- V434.22-34
- 文献标志码:
- A
- 摘要:
- 为了研究富氧发生器液氧供应系统的动态特性,详细考虑液氧头腔中的流动过程和喷嘴动力学环节,建立了系统的传递矩阵模型。计算了系统在发生器室压扰动下的频率响应特性,并分析液氧头腔体积、喷嘴压降、喷嘴惯性和发动机工况对液氧供应系统动态响应的影响。结果表明,由于液氧头腔的容积较大,液氧喷注导纳主要取决于头腔和喷嘴的动态特性,出口流量幅值在很宽的频率范围内都较高。增大头腔体积,则增大出口流量的幅值,降低头腔中压力响应幅值。适当提高喷注压降或喷注单元的惯性,都能降低液氧喷注导纳的幅值。在低工况下出口流量幅值在300~8
- Abstract:
- In order to investigate the dynamical characteristics of LOX feed system for the oxidizer-rich preburner, the transfer matrix models were established by detailedly considering the flow progress in LOX manifold and the injector dynamic component. The frequency response characteristics of the system under the gas generator pressure disturbance were computed. The influence of LOX manifold volume, injection pressure drop, injection inertia and engine thrust level on dynamic response of the LOX feed system were analyzed. The results indicate that, due to the large volume of LOX manifold, the LOX injection admittance is mainly depended on the dynamic characteristics of manifold and injector, and outlet flow rate has high response amplitude in wide frequency range. If the manifold volume is enlarged, the outlet flow rate amplitude is increased and the pressure response amplitude is reduced. If appropriately improving the injection pressure drop or the injection inertia, the amplitude of LOX injection admittance can be decreased. At the low thrust level, the outlet flow rate amplitude enlarges at 300~800 Hz, which is a disadvantage to the coupled stability within the frequency range.
参考文献/References:
[1]张贵田. 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社, 2005.
[2]BAZAROV V G. Design of injectors for self-sustaining of combustion chambers stability, AIAA 2006-4722[R]. USA: AIAA, 2006.
[3]HOLSTER J L. Analytical model for liquid rocket pro- pellant feedline dynamics[J]. Journal of Spacecraft, 1973, 11(3): 180-187.
[4]张黎辉, 张振鹏. 补燃循环液体火箭发动机输送系统的频率特性[J]. 推进技术,2000, 21(1): 5-7.
[5]陈琪锋, 刘昆. 基于分布参数线性化模型的分级燃烧循环液体火箭发动机频率特性计算[J]. 航空动力学报, 2001, 16(1): 44-48.
[6]YANG V, BAZAROV V G. Liquid-propellant rocket engine injector dynamics[J]. Journal of Propulsion and Power, 1998, 14(5): 797-806.
[7]BENEDICTIS M D. High frequency injection coupled combustion instabilities study of combustion chamber/feed system coupling, AIAA 2006-4721[R]. USA: AIAA, 2006.
[8]AITHAL S M, LIU Zhi-ning, JENSEN R J. Nonlinear injection transfer function simulations for liquid propellants, AIAA 2008-4742[R]. USA: AIAA, 2008.
[9]LIN R-S, BERTOLOTTI F P, ECKETT C A. A study of the application of a finite element model to the predictions of the injection-coupled response of a LOX post, AIAA 2010-6563[R]. USA: AIAA, 2010.
[10]杨立军, 富庆飞. 由喷嘴连接的燃烧室到供应系统压力振荡传递过程研究[J]. 航空动力学报, 2009, 24(5): 1182-1186.
[11]刘上, 刘红军. 液体离心喷嘴动力学特性理论分析[J]. 火箭推进, 2012, 38(3): 1-6.
备注/Memo
收稿日期:2012-11-19;修回日期:2012-12-22
基金项目:中国航天科技集团公司支撑项目(2009JY13)
作者简介:刘上(1984—),男,博士研究生,研究领域为液体火箭发动机系统动力学