航天推进技术研究院主办
GUO Hai-bo,XIAO Hong,NAN Xiang-yi,et al.Analysis on thermodynamic cycle characteristics of synergistic air-breathing rocket engine[J].Journal of Rocket Propulsion,2013,39(03):15-20.
复合预冷吸气式火箭发动机热力循环分析
- Title:
- Analysis on thermodynamic cycle characteristics of synergistic air-breathing rocket engine
- 文章编号:
- 1672-9374(2013)03-0015-06
- 关键词:
- 复合预冷吸气式火箭发动机; 热力循环; 理想循环功; 热效率
- Keywords:
- synergistic air-breathing rocket engine; thermodynamic cycle; ideal cycle work; thermal efficiency
- 分类号:
- V434+.1
- 文献标志码:
- A
- 摘要:
- 采用热力学第一定律分析法分析了复合预冷吸气式火箭发动机(SABRE)的基本热力过程,得出了吸气模式和火箭模式下的理想循环功和热效率表达式,确定了影响发动机理想热力循环性能的特征参数。结果表明:吸气模式下SABRE核心机采用布雷顿循环,压气机的增压比和循环增温比是影响理想热力循环性能的关键参数;火箭模式下SABRE采用火箭发动机循环,喷管降压比和出口排气速度是影响理想热力循环性能的关键参数。氦气仅仅在发动机内通过换热器换热实现能量在各循环子系统之间的输运,而其本身并无变化,不对发动机的理想循环功和热效率产生
- Abstract:
- The basic thermodynamic process of synergistic air-breathing rocket engine (SABRE) is analyzed with the first law of thermodynamics method. The ideal cycle work and thermal efficiency expressions in both air-breathing mode and rocket mode were obtained. Furthermore, several characteristic parameters which affect the performance of the ideal thermodynamic cycles were determined. Results reveal that the pressune ratio of the compressor and cycle temperature ratio are the key parameters affecting the ideal thermodynamic cycle performance when SABRE core engine in air-breathing mode works in Brayton cycle, and the decompression ratio in the nozzle and exhaust velocity at nozzle outlet are the important parameters affecting the ideal thermodynamic cycle performance when the rocket engine cycle is adopted for SABRE . The helium energy transmission between all the cycle sub-systems is realized only by heat exchangers in the engine, but has no effects on ideal cycle work and thermal efficiency of SABRE.
参考文献/References:
[1]RICHARD V, ALAN B. The Skylon spaceplane, IAA 95-V3.07 [R]. [S.l.]: IAA, 1995.
[2]RICHARD V, ALAN B. The SKYLON spaceplane: pro- gress to realization[J]. JBIS, 2008, 61: 412-418.
[3]RICHARD V, ALAN B. The SKYLON spaceplane[J]. JBIS,2004, 57: 22-32 .
[4]HEMPSELL M,BOND A,VARVILL R. Progress on the SKYLON and SABRE development programme [C]// 62nd International Astronautical Congress. [S.l.]: IAC, 2011: 111-121.
[5]ROGER L, ALAN B. The SKYLON project, AIAA 2011-2244[R]. USA: AIAA, 2011.
[6]WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62: 122-130.
[7]WEBBER H,, ALAN B, MARK H, et al. The sensitivity of precooled air-breathing engine performance to heat exchanger design parameters[J]. JBIS, 2007, 60: 188-196.
[8]JAMES J M, CHRISTOPHER M H, ALAN B. An experi- mental precooler for airbreathing rocket engines[J]. JBIS, 2001, 54: 199-209 .
[9]TAYLOR N V,TETSUYA S. Experimental and computa- tional an[J]. 火箭推进, 2008, 34(6): 31-35.
[10]沈维道, 蒋智敏, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2001.
[11]冯青, 李世武, 张丽. 工程热力学[M]. 西安: 西北工业大学出版社, 2006.
[12]柳长安, 李平, 张蒙正. 吸气式发动机流道调节的影响[J].火箭推进, 2011, 37(4): 24-27.
相似文献/References:
[1]李文龙,郭海波,南向谊.空气涡轮火箭发动机热力循环特性分析[J].火箭推进,2015,41(04):48.
LI Wen-long,GUO Hai-bo,NAN Xiang-yi.Analysis on thermodynamic cycle characteristics
of air-turbo-rocket engine[J].Journal of Rocket Propulsion,2015,41(03):48.
[2]严俊峰,张蒙正,路媛媛.基于分层燃烧的RBCC发动机热力循环浅析[J].火箭推进,2017,43(04):29.
YAN Junfeng,ZHANG Mengzheng,LU Yuanyuan.Brief analysis on thermodynamic cycle of
RBCC engine based on stratified combustion[J].Journal of Rocket Propulsion,2017,43(03):29.
备注/Memo
收稿日期:2012-12-28;修回日期:2013-02-27
基金项目:国家863项目(2008AA705405)
作者简介:郭海波(1983—),男,工程师,研究领域为吸气式组合推进技术