航天推进技术研究院主办
YAO Zhao-hui,LI Guang-xi,ZHANG Meng-zheng,et al.Simulation and analysis for influence of fuel distribution on scramjet performance[J].Journal of Rocket Propulsion,2013,39(04):30-35.
燃油分配对超燃冲压发动机的性能影响仿真分析
- Title:
- Simulation and analysis for influence of fuel distribution on scramjet performance
- 文章编号:
- 1672-9374(2013)04-0030-06
- 分类号:
- V434+.13-34
- 文献标志码:
- A
- 摘要:
- 针对超燃冲压发动机两级燃油分配对内流道流动过程、燃烧模态、发动机性能及调节特性的影响问题,建立了发动机一维流动分析模型;对马赫数6/当量比1,马赫数6/当量比0.6,马赫数4/当量比1三种工况不同的一级/二级燃烧室燃油分配比例下的流动过程进行了仿真,并获得了不同燃油分配规律下的发动机性能。通过分析表明:超燃冲压发动机的两级燃油分配比例直接影响发动机内流道内的流动参数分布、燃烧模态及发动机比冲等性能参数。对于马赫数6/当量比1工况,当一级燃烧室的燃油分配比例为30%~70%时,可在全流道内组织纯超声速燃烧,
- Abstract:
- Aiming at the influence of the fuel distribution on the flow mechanism in scramjet duct, combustion mode, engine performance and adjustment characteristic, a one-dimensional scramjet analysis model was established. Simulation of flow process in one-stage/two-stage fuel distribution percent is carried under three different cases, including Ma 6/ψ 1, Ma 6/ψ 0.6, Ma 4/ψ 1. Scramjet performance in different fuel distribution is obtained. The analysis results show that the flow mechanism, combustion mode and engine performance are strongly dependent on the one-stage/two-stage fuel distribution percent. For the case of Ma 6/ψ 1, combustion in the duct can be organized in supersonic flow when one-stage combustor fuel distribution is at the range of 30%~70%, whose maximum specific impulse exceeds 800 s. For the case of Ma 6/ψ 0.6, combustion is always organized in supersonic flow even if all the fuel is injected in one-stage combustor, because the total fuel amounts are too small to choke the combustor duct, whose maximum specific impulse exceeds 800 s. For the case of Ma 4/ψ 1, combustion can be organized in subsonic flow and its maximum specific impulse is 1 031.9 s. Furthermore, the one-stage fuel distribution should not be too high, so as to avoid a subsonic combustion disturbance diffusing outside the combustor entrance.
参考文献/References:
[1]CURRAN E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17: 1138-1148.
[2]张蒙正, 邹宇. 美国典型高超飞行器项目研发及启示[J].火箭推进, 2012, 38(2): 1-8,37.
[3]BUSSING T R A, MURMAN E M. A one-dimensional unsteady model of dual mode scramjet operation, AIAA 83-0422[R]. USA: AIAA, 1983.
[4]张鹏, 俞刚. 超燃燃烧室一维流场分析模型的研究[J]. 流体力学实验与测量, 2003, 17(1): 88-92.
[5]刘敬华, 凌文辉, 刘兴洲, 等. 超音速燃烧室性能非定常准一维流数值模拟[J]. 推进技术, 1998, 19(1): 1-6.
[6]李建平.超燃冲压发动机/机体一体化优化设计研究[D]. 西安: 西北工业大学, 2009.
[7]SCHEUERMANN T, CHUN J, VON WOLFERSDORF J. One-dimensional modelling of a scramjet combustor re- acting flow. AIAA 2008-2643[R]. USA: AIAA, 2008.
[8]TRAN K. One dimensional analysis program for scramjet and ramjet flowpaths[D]. Virginia, USA: Virginia Poly- technic Institute and State University, 2010.
[9]HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. Washington DC: AIAA, 1994.
[10]JACHIMOWSKI C J. An analytical study of the hydro- gen-air reaction mechanism with applicaltion to scram- jet, NASA TP2791[R]. USA: NASA, 1988.
[11]RIGGINS D W,MCCLINTON C R. Analysisi of losses in supersonic mixing and reacting flows, AIAA 91-2266 [R]. USA: AIAA, 1991.
[12]RIGGINS D W, Clinton C R, ROGERS R C, BITTNER R. D. A comparative study of scramjet ignition strategies of high mach number flows. AIAA 92-3287[R]. USA: AIAA, 1992.
相似文献/References:
[1]朱舒扬.全尺寸超燃冲压发动机推力测量台架研制[J].火箭推进,2015,41(05):106.
ZHU Shuyang.Development of thrust measurement platform
for full-scale scramjet[J].Journal of Rocket Propulsion,2015,41(04):106.
[2]刘 昊,李光熙,杜 泉,等.超燃冲压发动机全流道反应流场仿真分析[J].火箭推进,2013,39(06):1.
LIU Hao,LI Guang-xi,DU Quan,et al.Numerical simulation of reaction flow field in full flowpath of scramjet[J].Journal of Rocket Propulsion,2013,39(04):1.
[3]张 倩,王 兵,张耘隆,等.RBCC的可实现性方案—DRBCC分析[J].火箭推进,2014,40(05):1.
ZHANG Qian,WANG Bing,ZHANG Yun-long,et al.An analysis of RBCC realizability scheme: DRBCC[J].Journal of Rocket Propulsion,2014,40(04):1.
[4]赵宏亮,张蒙正.超燃冲压发动机推阻力特性研究综述[J].火箭推进,2014,40(06):41.
ZHAO Hong-liang,ZHANG Meng-zheng.Investigation of thrust/drag property of scramjet[J].Journal of Rocket Propulsion,2014,40(04):41.
[5]张蒙正,邹 宇.美国典型高超飞行器项目研发及启示[J].火箭推进,2012,38(02):1.
ZHANG Meng-zheng,ZOU Yu.Development of American typical hypersonic flight vehicles and its enlightenment[J].Journal of Rocket Propulsion,2012,38(04):1.
[6]李龙飞,王延涛,杨伟东,等.超声速燃烧地面试验的蓄热式加热器及其关键技术[J].火箭推进,2012,38(02):16.
LI Long-fei,WANG Yan-tao,YANG Wei-dong,et al.Thermal energy storage heater and its key technologies for supersonic combustion ground test facilities[J].Journal of Rocket Propulsion,2012,38(04):16.
[7]文 科,李旭昌,马岑睿,等.不同入口马赫数对超燃冲压发动机尾喷管的性能影响研究[J].火箭推进,2011,37(03):18.
WEN Ke,LI Xu-chang,MA Cen-rui,et al.Influence of nozzle inlet Mach number on performance of scramjet nozzle[J].Journal of Rocket Propulsion,2011,37(04):18.
[8]冯锦虎,高峰,何至林.超燃冲压发动机隔离段内附面层/激波串相互干扰研究[J].火箭推进,2010,36(02):5.
Feng Jinhu,Gao Feng,He Zhilin.Investigation of boundary layer/shock wave train interference in a scramjet isolator[J].Journal of Rocket Propulsion,2010,36(04):5.
[9]王玉峰,吴宝元,王东东.变比热对超燃冲压发动机尾喷管设计的影响分析[J].火箭推进,2010,36(02):43.
Wang Yufeng,Wu BaoYuan,Wang Dongdong.Scramjet engine nozzle design with variable specific heat[J].Journal of Rocket Propulsion,2010,36(04):43.
[10]杨事民,唐豪,黄胡.凹腔超声速燃烧室氢气燃烧流场数值模拟[J].火箭推进,2008,34(01):12.
Yang Shimin,Tang Hao,Huang Yue.Numerical simulation of hydrogen combustion on
flow field in supersonic combustor with cavity[J].Journal of Rocket Propulsion,2008,34(04):12.
备注/Memo
收稿日期:2013-03-28;修回日期:2013-05-28
基金项目:总装备部预研项目(2007AA05306)
作者简介:姚照辉(1982—),男,博士,工程师,研究领域为吸气式高超声速推进技术