航天推进技术研究院主办
CHEN Chun-fu,LI Mao,WANG Shu-guang.Numerical study on pressurization process of liquid oxygen tank[J].Journal of Rocket Propulsion,2013,39(04):80-84.
液氧贮箱增压过程研究
- Title:
- Numerical study on pressurization process of liquid oxygen tank
- 文章编号:
- 1672-9374(2013)04-0080-05
- 分类号:
- V434+.13-34
- 文献标志码:
- A
- 摘要:
- 采用数值模拟方法对液氧贮箱增压过程进行研究。贮箱内流场采用流体体积函数(VOF)多相流模型考虑,选择标准双方程k-ε湍流模型分析湍流效应,气液两项之间的热量、质量转移通过自定义程序(UDF)求解。获得了贮箱压力、排液流量、气垫温度、液氧温度对贮箱内流场温度分布的影响。计算结果表明,在稳定增压过程中,贮箱液面无扰动,贮箱内温度分层分布;各参数变化时,对贮箱内温度分布的影响主要是温度梯度的变化,并且各工况下液面附近和扩散器附近温度梯度基本相同。
- Abstract:
- Pressurization process of the liquid oxygen tank was studied with a numerical simulation method. Volume of fluid (VOF) model was used for flow field inside the tank. The standard k-ε turbulence model was selected to analyze the turbulence effect, and a user-defined function (UDF) for phase transition was used to solve the heat and mass transfer between the liquid and the ullage gas. The effects of the factors including the tank pressure, mass flow rate of liquid oxygen, ullage gas temperature and liquid oxygen temperature on the temperature distribution of flow field inside the tank were obtained. The calculated results show that the liquid surface has no disturbance and the distribution of the ullage gas temperature is stratified in the steady pressurization process; the main influence of the factors on the temperature distribution is the variation of temperature gradient; and the temperature gradient near the liquid surface and the injector is almost the same in different working condition.
参考文献/References:
[1]范瑞详, 田玉蓉, 黄兵. 新一代运载火箭增压技术研究[J]. 火箭推进, 2012, 38(4): 9-16.
[2]王赞社, 顾兆林, 冯诗愚, 等. 低温推进剂贮箱增压过程的传热传质数学模拟[J]. 低温工程, 2007 (6): 28-32.
[3]张勇, 李正宇, 李强, 等. 低温液体贮箱加压排液过程计算模型比较[J]. 低温工程, 2007 (2): 25-27.
[4]王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程三种气枕模型的数值对比[J].航空动力学报, 2011, 26(9): 1995-2000.
[5]孙威, 方杰, 蔡国飙. N2O单组元微推进系统贮箱自增压特性[J]. 北京航空航天大学学报, 2009, 35(11): 1290-1293.
[6]代予东, 赵红轩. 运用数学方法模拟推进剂贮箱增压[J].火箭推进, 2003, 29(3): 34-40.
[7]ZILLIAC G, KARABEYOUGLU M A. Modeling of pro- pell ant tank pressurization, AIAA 2005-3549[R]. USA: AIAA, 2005.
[8]张超, 鲁雪生, 田丽亭. 火箭低温推进剂增压系统数学模型[J]. 低温与超导, 2005, 33(2): 35-38.
[9]BARSI S, KASSEMI M. A tank self-pressurization experi- ment using a model fluid in normal gravity[J]. Cryogenics, 2008, 48(3/4): 122-129.
[10]BARSI S, KASSEMI M. Numerical and experimental comparisons of the self-pressurization behavior of LH2 tank in normal gravity, AIAA 2007-5524[R]. USA: AIAA, 2007.
[11]GRAYSON G, LOPEZ A, CHANDLER F, et al. CFD modeling of helium pressurant effects on cryogenic tank pressure rise rates in normal gravity, AIAA 2007-5524 [R]. USA: AIAA, 2007.
[12]王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8): 1893-1899.
相似文献/References:
[1]徐鸿鹏,张志涛,唐斌运,等.发动机试验液氧贮箱放气系统动态特性研究[J].火箭推进,2018,44(05):71.
XU Hongpeng,ZHANG Zhitao,TANG Binyun,et al.Study on dynamic characteristics of gas-exhaust-system for liquid oxygen tank used for liquid rocket engine ground test[J].Journal of Rocket Propulsion,2018,44(04):71.
备注/Memo
收稿日期:2012-12-13;修回日期:2013-04-17
作者简介:陈春富(1973—),男,高级工程师,研究领域为液体火箭发动机试验技术