航天推进技术研究院主办
LI Xu-sheng,ZHENG Ji-kun,WU Yu-zhen.Aerodynamic optimization for blade profile of a supersonic impulse oxygen turbine[J].Journal of Rocket Propulsion,2014,40(05):44-49.
某型超音速冲击式氧涡轮叶型气动优化
- Title:
- Aerodynamic optimization for blade profile of a supersonic impulse oxygen turbine
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 使用NUMECA软件对某型超音速两级冲击式涡轮进行了全三维定常湍流流场计算,分析了计算结果。以此为基础,通过修改叶型得到性能较高的涡轮叶型设计,并对比了优化前后涡轮内部流场。以三维计算结果为基础,分析涡轮内部流动损失,在保证氧涡轮原有机械结构不做大的改变、输入条件不变的情况下,对涡轮叶型进行优化研究。以叶型参数为变量,以总静效率(在总总效率的基础上考虑余速损失而得)为目标函数,通过反复修改各个叶型参数,然后对每次修改过的叶片进行三维计算,通过比较涡轮总静效率大小判断叶型优劣。通过优化,获得了效率更高、做功能力更强的涡轮叶型。研究成果对工程研制有一定的指导意义,总结的涡轮气动设计及优化方法,对涡轮的设计具有借鉴作用。
- Abstract:
- Three-dimensional steady turbulent flow field inside a supersonic oxygen turbine was calculated with NUMECA software, and the calculated results were analyzed. On basis of the calculation and analysis, a high-performance turbine blade profile was got by modifying the shape of the blade. The internal flow fields before and after modification were compared. On basis of the three-dimension numerically simulation, the various flow losses inside the oxygen turbine were analyzed. Under the condition of keeping the initial mechanical construction of the oxygen turbine and requirements from engine design, the initial blades profile of turbine was optimized. Taking the blade parameters as variables and total-static efficiency as optimization objective, the parameters of blade profile were repeatedly changed, the 3-D calculation was performed after each change, the total-static efficiencies of the turbine were compared for judging whether the blade profile is good or not. By optimization, a new turbine blade profile with higher efficiency and power was achieved. The results have contribution to engineering research. The methods of the aerodynamic design and optimization are summarized.
参考文献/References:
[1]李斌. 先进涡轮气动设计规律的研究[D]. 哈尔滨: 哈尔滨工程大学.
[2]宁方飞, 徐立平. Spalart-Allmaras 湍流模型在内流流场数值模拟中的应用[J]. 工程热物理学报, 2001, 22(3): 304-306.
[3]SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flow, AIAA, 92-0439[R]. USA: AIAA, 1992.
[4]祝昭. 转/静交界面处理方法研究及涡轮结构与气动分析[D]. 南京: 南京航空航天大学, 2008.
[5]卢芳云. 一维不定常流体动力学教程[M]. 北京: 科学出版社, 2006.
[6]LANGSTON L S. Cross flow in a turbine cascade passage [J]. ASME Journal of Engineering for Power, 1980, 102: 866-874.
[7]GOLDSTEIN R J, SPORES R A. Turbulent transport on the end wall in the region between adjacent turbine blades [J]. ASME Journal of Heat Transfer, 1988 (10): 862-869.
[8]楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安: 西北工业大学出版社.
[9]奥夫相尼科夫, 博罗夫斯基. 液体火箭发动机涡轮泵装置原理与计算[M]. 任汉芬, 夏德新, 译. 北京: 中国航天工业总公司第十一研究所(京), 1999.
相似文献/References:
[1]徐楠,安莎,白东安,等.上面级发动机小功率冲击式涡轮性能试验研究[J].火箭推进,2016,42(06):43.
XU Nan,AN Sha,BAI Dongan,et al.Performance test for low-power impact turbo of upper stage liquid rocket engine[J].Journal of Rocket Propulsion,2016,42(05):43.
备注/Memo
收稿日期:2014-02-11;修回日期:2014-03-28 基金项目:中国航天科技集团公司支撑项目(2011JY06) 作者简介:李旭升(1986—),男,研究生,研究领域为涡轮泵设计