航天推进技术研究院主办
ZHOU Wei.Flow field simulation analysis of cooling configuration in thrust chamber of an expander cycle engine[J].Journal of Rocket Propulsion,2015,41(02):63-69.
某膨胀循环发动机推力室冷却结构流场仿真分析
- Title:
- Flow field simulation analysis of cooling configuration in thrust chamber of an expander cycle engine
- 分类号:
- V434-34
- 文献标志码:
- A
- 摘要:
- 为了研究某膨胀循环氢氧发动机推力室冷却结构流场分布特性,进行了单根冷却通道和完整冷却通道结构的三维CFD分析。仿真计算过程中,以单根通道模型的仿真结果作为完整通道结构模型流场仿真分析的边界条件之一,并考虑了材料物性参数随温度或压力的变化。分析结果表明:1)仿真预测的温升、压降与热试验实测值吻合,该推力室冷却通道流量相对偏差范围为-4.8%~6.6%,由此造成喉部气壁温的环向偏差为33 K;2)集合器管内流体的环向流动压差、法兰起分流或汇聚作用时拐弯效应形成的压力波动是造成冷却通道流量不均匀分布的主要原因,出口集合器内的压力分布对通道流量分布起主要作用;3)提高通道流量均匀性的措施可以从增大出口集合器管径或采用变管径设计、采用扩口型法兰并设置弧形导流片、集合器的进、出口法兰布置在同一环向位置等方面进行考虑。
- Abstract:
- In order to investigate the flow field distribution features of cooling configuration in thrust chamber of an expander cycle engine, 3D CFD analyses for single channel and full channel configuration are done. In computation process,the simulation result of single channel model is taken as one of the boundary conditions in flow field simulation analysis of full channel structure model, in which the variation of material physical property parameters with pressure or temperature is considered. The analysis results show as follows: 1) the temperature rise and pressure reduction predicted in simulation is consistent with results got in hot testing, and the relative deviation of mass flow in the cooling channel of the thrust chamber is -4.8%~6.6%, as a result, the circumferential deviation of the side-wall temperature at throat is 33 K; 2) the pressure differential caused by circumferential flow in manifold, and the pressure fluctuation caused by flow turning effect at the conjugate corner formed with flange and manifold are the primary cause which leads to mass flow uneven distribution, and the pressure distribution in outlet manifold plays a leading role in mass flow distribution in cooling channels; 3) the measures to decrease mass flow maldistribution can be amplification of the inner diameter of outlet manifold tube or variable diameter design, funnel-shaped flange with guide vanes, and also can arrange inlet and outlet flanges in same circumferential position.
参考文献/References:
[1]GEORGI S, GORGEN J, HAIDINGER F A. Flow Simul- ations for the design of Vulcain 2 thrust chamber manifolds, 98-3369 [R]. USA: AIAA,1998.
[2]MATTSTEDT T B, HAIDINGER F, LUGER P, et al. Development, manufacturing and test status of the VINCI expander thrust chamber assembly, AIAA 2002-4009 [R]. USA: AIAA, 2002.
[3]HIDEYO N, DAIMON Y, KAWASHIMA, et al. Conjugated combustion and heat transfer modeling for full-scale regeneratively cooled thrust chambers, AIAA 2013-3997 [R]. USA: AIAA, 2013.
[4]李军伟, 刘宇. 一种计算再生冷却推力室温度场的方法[J]. 航空动力学报, 2004, 19(4): 550-556.
[5]吴峰, 王秋旺, 罗来勤, 等. 液体火箭发动机推力室冷却通道流动与传热数值研究[J]. 推进技术, 2005, 10(5): 389- 393.
[6]张宏伟, 陶文铨, 何雅玲, 等. 再生冷却推力室耦合传热数值模拟[J]. 航空动力学报, 2006, 21(5): 930-936.
[7]韩非, 刘宇. 冷却剂不同流动方式对膨胀循环推力室再生冷却换热的影响[J].航空动力学报, 2006, 21(6):1116-1122.
[8]MCCARTY R D. Hydrogen technological survey: thermo- physical properties, NASA SP-3089[R]. USA: NASA, 1975.
[9]刘国球, 任汉芬, 朱宁昌, 等. 液体火箭发动机原理[M]. 北京: 宇航出版社, 1993.
[10]王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
[11]KNAB A F. Advanced cooling circuit layout for the VINCI expander cycle thrust chamber, AIAA 2002- 4005 [R]. USA: AIAA, 2002.
相似文献/References:
[1]郭灿琳,卢 钢,陈建华,等.喷嘴式隔板与纵向肋式隔板阻尼效应分析[J].火箭推进,2013,39(03):32.
GUO Can-lin,LU Gang,CHEN Jian-hua,et al.Analysis on damping effect of vibration baffles with protruded injectors and longitudinal ribs[J].Journal of Rocket Propulsion,2013,39(02):32.
[2]孙永奇,李宝荣,杨建文.上面级发动机推力室喷管延伸段气膜冷却研究[J].火箭推进,2013,39(04):13.
SUN Yong-qi,LI Bao-rong,YANG Jian-wen.Research on gas film cooling at nozzle extension section of thrust chamber for upper stage engine[J].Journal of Rocket Propulsion,2013,39(02):13.
[3]高翔宇,孙纪国,田 原.缩比推力室甲烷传热试验研究[J].火箭推进,2013,39(04):19.
GAO Xiang-yu,SUN Ji-guo,TIAN Yuan.Experimental study on methane heat transfer test system[J].Journal of Rocket Propulsion,2013,39(02):19.
[4]燕 珂,单世群,王莉红,等.液体推进剂热稳定性研究方法探讨[J].火箭推进,2014,40(02):90.
ZHANG Meng-zheng,LI-Bin,LU Yuan-yuan.Thinking about thrust and resistance characteristics of RBCC power system adapting to rectangle section flow passage[J].Journal of Rocket Propulsion,2014,40(02):90.
[5]李 强,聂 嵩,刘业奎,等.过氧化氢/煤油发动机推力室气液燃烧数值模拟[J].火箭推进,2011,37(04):35.
LI Qiang,NIE Song,LIU Ye-kui,et al.Numerical simulation of combustion characteristicsfor thrust chamber in hydrogen peroxide/kerosene engine[J].Journal of Rocket Propulsion,2011,37(02):35.
[6]周红玲,等.国内外卫星用液体远地点发动机发展综述[J].火箭推进,2011,37(05):1.
ZHOU Hong-ling,JIANG Wen-long,et al.Development of liquid apogee engine for satellite at home and abroad[J].Journal of Rocket Propulsion,2011,37(02):1.
[7]李丹琳,栾叶君,孙纪国.液氧/甲烷气液喷注器试验研究[J].火箭推进,2010,36(04):59.
Experimental investigation on LOX/CH4 subscale thrust chamber[J].Journal of Rocket Propulsion,2010,36(02):59.
[8]杜大华,吴静杰,段捷.液体火箭发动机推力室极限承载能力研究[J].火箭推进,2010,36(05):40.
DU Da-hua,WU Jing-jie,DUAN Jie.Analysis of loading limit of the LRE thrust chamber[J].Journal of Rocket Propulsion,2010,36(02):40.
[9]刘伟,胡伟,周军,等.低冰点推进剂1N单组元发动机技术研究[J].火箭推进,2009,35(05):13.
Liu Weil,Hu Weil,Zhou Junl,et al.Research on 1 N mono-propellant rocket engine with low
freezing point propellant[J].Journal of Rocket Propulsion,2009,35(02):13.
[10]张锋,仲伟聪.膜冷却推力室传热计算研究[J].火箭推进,2009,35(04):34.
Zhang Feng,Zhong Weicong.Computational investigation of heat transfer for
film cooling thrust chamber[J].Journal of Rocket Propulsion,2009,35(02):34.
[11]宣智超,刘中祥,齐 戎.膨胀循环发动机推力室传热优化[J].火箭推进,2012,38(06):8.
XUAN Zhi-chao,LIU Zhong-xiang,QI Rong.Heat transfer optimization of thrust chamber in expansion cycle engine[J].Journal of Rocket Propulsion,2012,38(02):8.
备注/Memo
收稿日期:2014-08-13;修回日期:2014-12-11 作者简介:周伟(1982—),男,高级工程师,研究领域为液体火箭发动机推力室