航天推进技术研究院主办
ZHOU Yi-peng,ZHU Ding-qiang.Numerical calculation of radiative heat flux on nozzle wall of liquid propellant rocket engine[J].Journal of Rocket Propulsion,2015,41(03):27-32.
液体火箭发动机喷管壁面辐射热流的数值计算
- Title:
- Numerical calculation of radiative heat flux on nozzle wall of liquid propellant rocket engine
- 分类号:
- V430-34
- 文献标志码:
- A
- 摘要:
- 为火箭发动机喷管设计及其冷却系统的设计提供有效参考数据作为应用背景,计算喷管壁所受的红外辐射热流。分别推导了有限体积法和反向蒙特卡罗法适用于不含粒子条件下喷管壁面所受红外辐射热流的计算公式,并针对不同的边界条件设定,重点分析了有限体积法的特性,并提出了有限体积法的局限性。最后,以某三维双圆弧喷管模型为例,用有限体积法和反向蒙特卡罗法自主编写程序计算在不同边界设定下壁面受到的红外辐射热流密度。通过计算结果对有限体积法的局限性进行了论证,同时肯定了反向蒙特卡罗法在壁面辐射热流计算上的优势。
- Abstract:
- The radiative heat flux on the wall of nozzle is calculated to provide the effective reference data for design of rocket engine nozzle and its cooling system. The formulas of finite volume method (FVM) and (backward Monte Carlo method) BMCM, which are appropriate for calculating the radiation heat flux density of nozzle's wall, are derived without the influence of particle. According to different boundary conditions, the characteristics of FVM are analyzed, and the limitation of FVM is proposed. At the end of the paper, taking a 3D model of double-arc nozzle as an example, the self-complied programs in FVM and BMCM are utilized to calculate infrared radiation heat flux density on the nozzle wall according to the different boundary setting. According to the results, the limitation of FVM is verified, and the advantage of BMCM in calculating the radiative heat flux on the nozzle wall surface is affirmed.
参考文献/References:
[1]MODEST M F. Radiation heat transfer[M]. 2nd ed. Sandiego: Academic Press, 2003: 645-676.
[2]BRIGGS L L, MILLER W F, Jr., LEWIS E E. Ray-effect mitigation in discrete ordinate-like angular finite element approximations in neutron transport[J]. Nuclear Science and Engineering, 1975 (112): 205-217.
[3]RAITHBY G D, CHUI E H. A finite-volume method for predicting a radiant heat transfer enclosures with partici- pating media[J]. ASME Journal of Heat Transfer, 1990, 112(2): 415-423.
[4]CHAI J C, PARHTASARATHY G, LEE H S, et al. Finite volume method for radiation heat transfer procedure for irregular geometries[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(3): 410-415.
[5]NELSON H F. Backward Monte Carlo modeling for rocket plume base heating[J]. Journal of Heat Transfer, 1992, 6(3): 556-558.
[6]郑才浪, 朱定强, 乔要宾. 轨控发动机羽流红外辐射的数值仿真[J]. 宇航学报, 2014, 35(5): 521-527.
[7]WALTERS D V, BUCKIUS R O. Rigorous development for radiation heat transfer in nonhomogeneous absorbing, emitting and scattering media[J]. International Journal of Heat and Mass Transfer, 1992, 35(12): 3323-3333.
[8]MODEST M F. Radiation heat transfer[M]. 2nd ed. San- diego: Academic Press, 2003: 645-676.
[9]LIU L H. Backward Monte Carlo method based on radiation distribution factor[J]. AIAA Journal of Thermo physics and Heat Transfer, 2004, 18(1): 151-153.
[10]柴栋, 方洋旺, 童中翔, 等. 超然冲压发动机喷管红外辐射特性数值模拟[J]. 航空学报, 2013, 34(10): 2300- 2307.
[11]黄伟, 吉洪湖. 加力式涡扇发动机非家里状态部件红外辐射分析[J]. 航空动力学报, 2011, 26(1): 48-53.
[12]谈和平, 夏新林, 刘林华, 等. 计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006: 194-213.
[13]LUDWING C B, MALKMUS W, REARDON J E, et al. Handbook of infrared radiation from combustion gases, NASA-SP-3080[R]. USA: AIAA, 1973.
相似文献/References:
[1]董飞,何国强.铣槽结构液体火箭发动机推力室壳体热应力分析[J].火箭推进,2007,33(03):43.
Dong Fei,He Guoqiang.Thermal stress analyses of liquid propellant thruster chamber wall with milled slots[J].Journal of Rocket Propulsion,2007,33(03):43.
[2]陈阳,高芳,张振鹏,等.气动薄膜调节阀控制系统工作过程的动态仿真[J].火箭推进,2006,32(06):28.
Chen Yang,Gao Fang,Zhang Zhenpeng,et al.Dynamic simulation of working process for control system of a pneumatic diaphragm control valve[J].Journal of Rocket Propulsion,2006,32(03):28.
备注/Memo
收稿日期:2014-08-19;修回日期:2015-01-03 作者简介:周一鹏(1990—),男,硕士,研究领域为红外辐射特性计算