航天推进技术研究院主办
KANG Xiaolu,HANG Guanrong,et al.Development and application of Hall electric propulsion technology[J].Journal of Rocket Propulsion,2017,43(01):8-17.
霍尔电推进技术的发展与应用
- Title:
- Development and application of Hall electric propulsion technology
- Keywords:
- Hall electric propulsion technology; Hall thruster; multimode adjustment; high power propulsion
- 分类号:
- V439.4-34
- 文献标志码:
- A
- 摘要:
- 霍尔电推进具有推力密度大、推力功率比大、比冲高及系统可靠等优点,在20世纪60~70年代突破关键技术、完成空间试验后,在俄、美、欧等航天器上获得大量应用,执行位置保持、轨道转移、轨道调整和深空探测主推进等任务.目前,100W级到5kW级功率的霍尔推力器已经实现在轨应用,100kW功率的霍尔推力器已在研制中.针对未来载人深空探测、GEO卫星、低轨和超低轨卫星及轨道机动飞行器等任务需求,霍尔电推进朝着更大功率包络,更强多模式调节能力,更高性能,更长寿命及推进剂多样化等方向发展.在分析霍尔电推进技术特点和适用任务后,对国内外霍尔电推进技术的发展现状、任务应用等进行了综述,最后对霍尔电推进的发展趋势进行了展望.
- Abstract:
- Hall electric propulsion has the merits of high thrust density,high thrust-to-power ratio,high specific impulse and high reliability.It brought through its key technology and completed its space experiments during 1960s and 1970s.Now Hall electric propulsion has got a lot of applications,such as station keeping,orbit transfer,orbit adjustment and main propulsion of deep space,in spacecrafls of Russia,USA and some other countries.Currently,on-orbit application of 100 W~5 kW Hall thrusters has been realized,and 100 kW Hall thruster is under development.According to the mission requirements of future manned deep-space exploration,GEO satellites,LEO satellites and super low orbit satellites and orbital maneuver vehicles,Hall electric propulsion is developed towards the directions of higher-power envelope,stronger multimode adjustment capability,higher performance,longer life and propellant diversification.In this paper,the technical features and the applicable tasks of Hall electric propulsion technology is analyzed,the development and applications of Hall electric propulsion technology at home and abroad are reviewed,and then the development trends of Hall electric propulsion is prospected.
参考文献/References:
[1]KIM V P. Design features and operating procedures in advanced Morozov's stationary plasma thrusters[J]. Technical physics, 2015, 60(3): 362-375.
[2]KHODNENKO V P. Activities of VNIIEM in EPT field History, our days and prospects: IEPC-2013-65[R]. USA:IEPC, 2013.
[3]Anon. Hall ion thrusters to fly on X-37B spaceplane [EB/OL]. http://newatlas.com/us-air-force-x-37B-hall- thruster /37200.
[4]Anon. US Air Force Launches X-37B Space Plane on 4th Mystery Mission [EB/OL]. http://www.space.com/29448- x37b-space-plane-launches-fourth-mission.
[5]Anon. Russia launches spy satellite for Egypt [EB/OL]. http://www.russianspaceweb.com/egyptsat2.
[6]KOPPEL C R, MARCHANDISE F, ESTUBLIER D, et al. The SMART-1 electric propulsion subsystem in flight experience: AIAA 2004-3435[R]. USA: AIAA, 2004.
[7]ARHIPOV B A, BOBER A S, GNIZDOR R Y, et al. The results of 7000-HOUR SPT-100 life testing[C]// Proceedings of 24th International Electric Propulsion Conference. Moscow, Russia: IEPC, 1995: 31-39.
[8]CORNU N, MARCHANDISE F, DARNON F, et al. The PPS?1350-G qualification demonstration: 10500 hrs on the ground and 5000 hrs in flight: AIAA-2007-5197[R]. USA: AIAA, 2007.
[9]DE GRYS K, MATHERS A, WELANDER B, et al. Demonstration of 10,400 hours of operation on a 4.5 kW qualification model Hall thruster: AIAA 2010-6698[R]. USA: AIAA, 2010.
[10]IOANNIS G M, IRA K, RICHARD R H, et al. Magnetic shielding of a laboratory Hall thruster I theory and validation[J]. Journal of applied physics, 2014, 115(4): 043303-043303-20.
[11]CHO S, WATANABE H, KUBOTA K, et al. Parametric kinetic simulation of an IHI high specific impulse SPT-type Hall thruster: AIAA 2014-3426[R]. USA: AIAA, 2014.
[12]HUANG W, SHASTRY R, HERMAN D A, et al. Ion current density study of the NASA-300M and NASA-457Mv2 Hall thrusters: AIAA 2012-3870[R]. USA: AIAA, 2012.
[13]HALL S J, FLORENZY R E, GALLIMOREZ A D, et al. Implementation and initial validation of a 100-kW class nested-channel Hall thruster: AIAA 2014-3815[R]. USA: AIAA, 2014.
[14]MARRESE-READING C M, FRISBEE R, SENGUPTA A, et al. Very high ISP thruster with anode layer (VHITAL): an overview: AIAA 2004-5910[R]. USA: AIAA, 2004.
[15]GEORGE J W, JR, GILLAND J H, PETERSON P Y, et al. Wear testing of the HERMeS thruster: AIAA 2016-5025[R]. USA: AIAA, 2016.
[16]GORBUNOV A V, KHODNENKO V P, KHROMOV A V. Vernier propulsion system for small earth remote sensing satellite “Canopus-V”: IEPC-2011-001[R]. Germany: IEPC, 2011.
[17]DIALLO A, KELLER S, SHI Y, et al. Time-resolved ion velocity distribution in a cylindrical Hall thruster: Heterodyne-based experiment and modeling[J]. Review of scientific instruments, 2015(86): 033506.
[18]鄂鹏, 于达仁, 武志文, 等. 磁场强度对霍尔推力器放电特性影响的实验研究[J]. 物理学报, 2009, 28(4):2535-2542.
[19]杜建华, 周世安, 赵兰, 等. HEP-100MF霍尔推力器电源处理单元[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 861-864.
[20]田立成, 赵成仁, 张天平, 等. LHT-100霍尔电推进系统鉴定试验及集成测试[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 817-829.
[21]高俊, 汤章阳, 刘国西, 等. 我国卫星电推进系统研制情况及应用进展[C]//2016年第十二届中国电推进技术学术研讨会, 哈尔滨: [s.n]. 2016: 128-135.
[22]钱中, 康小录, 王平阳. 霍尔推力器等离子体羽流粒子模拟[J]. 上海航天, 2009(4): 43-46.
[23]邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究[J]. 物理学报, 2011, 60(2): 025213.
[24]MAZOU S, TSIKATAY S, VAUDOLONZ J, et al. Dev- elopment and characterization of a wall-less Hall thruster: AIAA 2014-3513[R]. USA: AIAA, 2014.
[25]HERMAN D A, UNFRIED K G.. Xenon acquisition strategies for high-power electric propulsion NASA Missions[R]. USA: NASA, 2015.
相似文献/References:
[1]张志远,田 杨,王平阳,等.霍尔推力器寿命实验和计算分析[J].火箭推进,2014,40(03):16.
ZHANG Zhi-yuan,TIAN Yang,WANG Ping-yang,et al.Experiment and calculation analysis
of Hall thruster lifetime[J].Journal of Rocket Propulsion,2014,40(01):16.
[2]乔彩霞,张 岩,康小录,等.80 mN霍尔推力器空心阴极寿命试验[J].火箭推进,2014,40(04):11.
QIAO Cai-xia,ZHANG Yan,KANG Xiao-lu,et al.Life test of hollow cathode for 80 mN Hall thruster[J].Journal of Rocket Propulsion,2014,40(01):11.
[3]张乾鹏,康小录,余水淋.霍尔推力器羽流离子能量实验研究[J].火箭推进,2010,36(03):10.
r.Experimental investigations of ion energy distribution in the plasma exhaust plume of a hall thruste[J].Journal of Rocket Propulsion,2010,36(01):10.
[4]汪礼胜,唐德礼.阳极层推力器的研究现状与发展趋势[J].火箭推进,2006,32(01):24.
Wang Lisheng,Tang Deli.The state of arts of thruster with anode layer[J].Journal of Rocket Propulsion,2006,32(01):24.
备注/Memo
收稿日期:2016-12-20;修回日期:2017-01-13 作者简介:康小录(1962—),男,研究员,研究领域为电推进技术