º½ÌìÍƽø¼¼ÊõÑо¿ÔºÖ÷°ì
¡¡LI Yongzhou,LI Guangxi,ZHANG Kunyuan,et al.Design method of waverider with controlled horizontal projection of leading edge[J].Journal of Rocket Propulsion,2017,43(05):20-27.
ǰԵˮƽͶӰ¿É¿ØµÄ³Ë²¨ÌåÉè¼Æ·½·¨Ñо¿
- Title:
- Design method of waverider with controlled horizontal projection of leading edge
- ·ÖÀàºÅ:
- V221-34
- ÎÄÏ×±êÖ¾Âë:
- A
- ÕªÒª:
- ½áºÏÁ÷Ïß×·×Ù¼¼ÊõºÍÃÜÇÐÃæ»ìºÏº¯ÊýÌá³öÁËÒ»ÖÖǰԵˮƽͶӰ¿É¿ØµÄ³Ë²¨ÌåÉè¼Æ·½·¨,²¢Íê³ÉÁËǰԵˮƽͶӰΪ³¬ÍÖÔ²µÄ³Ë²¨Ìå(Waverider-F)ºÍ³¬ÍÖԲǰԵת³¬ÍÖÔ²ºóÔµµÄ³Ë²¨Ìå(Waverider-FT)Éè¼Æ¡£¶þÕß¾ßÓнϸߵÄÈÝ»ýЧÂÊ,Ç°Ôµ¶ÔÓ¦µÄÖáÏòͶӰ½üËÆΪÓàÏÒÇúÏß¡£Í¨¹ýÊýÖµ·ÂÕæÑéÖ¤ÁËÉè¼Æ·½·¨µÄÓÐЧÐÔ,Éè¼ÆµãʱWaverider-FµÄ³Ë²¨ÌØÐÔÁ¼ºÃÇÒ±£³ÖÁË»ù×¼Á÷³¡µÄÌصã,Waverider-FTÇ°²¿ÍêÈ«³Ë²¨,ºó²¿Á½²àÓÕµ¼¼¤²¨Ê¹Á÷³¡±äÐÎÇÒÐγɸßѹÇø,½ÓÁ¦µãʱ¶þÕߵij˲¨ÌØÐÔÒ²½ÏºÃ¡£ÁíÍâ,¶þÕß¾ßÓнϸߵÄÉý×è±ÈºÍԤѹËõЧÂÊ,Éè¼ÆµãʱÎÞÕ³Éý×è±È·Ö±ðΪ3.46ºÍ2.88¡£ÓëWaverider-FÏà±È,Waverider-FTµÄÉýÁ¦¡¢×èÁ¦ºÍ³ö¿ÚÔöѹ±È¶¼Ã÷ÏÔÔö¼Ó,¶øÉý×è±È¡¢¸©ÑöÁ¦¾ØºÍ³ö¿Ú×Üѹ»Ö¸´ÏµÊý½µµÍ¡£ÓÐÕ³Ìõ¼þÏÂ,Éè¼ÆµãµÄÉý×è±ÈÓÉ2.91½µÎª2.41,¶ÔÓ¦µÄ³ö¿Ú×Üѹ»Ö¸´ÏµÊý½µµÍÁË5.8%¡£
- Abstract:
- A design method of waverider with controlled horizontal projection of leading edge is proposed in combination with streamline tracing technique and blend function of osculating plane,with which the waveriders with hyper elliptic horizontal projection of leading edge(Waverider-F)and with hyper elliptic leading edge to hyper elliptic trailing edge transition(Waverider-FT)are designed.Both of them are of high volume ratio and their corresponding axial projection of leading edges is approximate to cosine curve.The effectiveness of the design method was validated by numerical simulation.For design point,Waverider-F has good waverider characteristics and keeps the feature of reference flow field.The forepart of Waverider-FT is a complete waverider,but the flow field is transfigured by both sides' induced shock of rear part and exists high pressure region.Their waverider characteristics are also good at relay point.Moreover,they are of high lift-drag ratio and pre-compression efficiency.Under inviscid condition,their life-drag ratios are 3.46 and 2.88 for design point.In comparison with Waverider-F,the lift force,drag force and exit compression ratio of Waverider-FT are significantly increased,and the lift-drag ratio,pitching moment and exit total pressure recovery coefficient are decreased.Under viscous condition,the lift-drag ratio at the design point decreases from 2.91 to 2.41,its corresponding exit total pressure recovery coefficient reduces 5.8%.
²Î¿¼ÎÄÏ×/References:
[1] Ò¶ÓÑ´ï. ½ü¿Õ¼ä¸ßËÙ·ÉÐÐÆ÷Æø¶¯ÌØÐÔÑо¿Óë²¼¾ÖÉè¼ÆÓÅ»¯[J]. Á¦Ñ§½øÕ¹, 2009, 39(6): 683-694.
[2] ANDERSON J D, LEWIS M J. Hypersonic waveriders: where do we stand?: AIAA 1993-0399 [R]. USA: AIAA, 1993.
[3] DUNCAN LUNAN M A. Waverider, a revised chronology: AIAA 2015-3529 [R]. USA: AIAA, 2015.
[4] NONWEILER T R F. Aerodynamic problems of manned space vehicles [J]. Journal of the royal aeronautical society, 1959, 63: 521-530.[5] JONES J U, MOORE K C,PIKE J, et al. A method for designing lifting configurations for high supersonic speeds using axisymmetric flow field [J]. Archive of applied mechanics, 1968, 37(1): 56-72.
[6] SOBIECZKY H, ZORES B, WANG Z. High speed flow design using the theory of osculating cones and axisymmetric flows [J]. Chinese journal of aeronautics, 1999, 12(1): 1-8.
[7] GOONKO Y P, MAZHUL I I, MARKELOV G N. Convergent flow derived waveriders [J]. Journal of aircraft, 2000, 37(4): 647-654.
[8] ÀîÓÀÖÞ,ÕňÒÔª. »ùÓÚÂíºÕÊý·Ö²¼¿É¿ØÇúÃæÍâ/ÄÚ׶Ðλù×¼Á÷³¡µÄÇ°Ìå/½øÆøµÀÒ»Ì廯Éè¼Æ[J] º½¿Õѧ±¨,2015, 36(1): 289-301.
[9] RASMUSSEN M P. Waverider configurations derived from inclined circular and elliptic cones [J]. Journal of spacecraft and rockets, 1980, 17(5): 537-545.
[10] TAKASHIMA N, LEWIS M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration: AIAA 1994-0380 [R]. USA: AIAA, 1994.
[11] Áõ´«Õñ,°× Åô,³Â±ùÑã,µÈ. ÈýάÁ÷³¡³Ë²¨Ìå¿ìËÙÉè¼Æ·½·¨¼°¶àÄ¿±êÓÅ»¯ [J]. Óѧ±¨, 2016, 37(5):535-543.
[12] LOBBIA M A, SUZUKIK. Multidisciplinary design optimization of hypersonic transport Configurations using waveriders: AIAA 2014-2359 [R]. USA: AIAA, 2014.
[13] OLSEN P E, NELSON R C. Vortex interaction over double delta wing at high angles of attack: AIAA 1989-2191 [R]. USA: AIAA, 1989.
[14] RODI P E. The osculating flowfield method of waverider geometry generation: AIAA 2005-0511 [R]. USA: AIAA, 2005.
[15] ¶ÎÑæ»Ô, ·¶ÕÙÁÖ, ÎâÎÄ»ª. ¶¨ºóÂÓ½ÇÃÜÇÐ׶³Ë²¨ÌåµÄÉú³ÉºÍÉè¼Æ·½·¨Ñо¿[J]. º½¿Õѧ±¨, 2016, 37(10):3023-3034.
[16] Áõ´«Õñ, °×Åô, ³Â±ùÑã. Ë«ºóÂӳ˲¨ÌåÉè¼Æ¼°ÐÔÄÜÓÅÊÆ·ÖÎö[J]. º½¿Õѧ±¨, 2017,38(6):120808.
[17] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets: design and optimization: AIAA 2006-297 [R]. USA: AIAA, 2006.
[18] ÀîÓÀÖÞ,ÕňÒÔª,ËïµÏ. ÂíºÕÊý¿É¿ØµÄ·½×ªÔ²¸ß³¬ÉùËÙÄÚÊÕËõ½øÆøµÀʵÑéÑо¿[J]. º½¿Õѧ±¨, 2016,37(10): 2970-2979.
ÏàËÆÎÄÏ×/References:
[1]ÀîÓÀÖÞ,Àî¹âÎõ,ÕňÒÔª,µÈ.Ç°ºóԵͬʱ¿É¿ØµÄ³Ë²¨ÌåÆø¶¯ÐÞÐÍÉè¼ÆÓë·ÖÎö[J].»ð¼ýÍƽø,2018,44(02):1.
¡¡LI Yongzhou,LI Guangxi,ZHANG Kunyuan,et al.Aerodynamic modification design and analysis of waverider with controllable leading and trailing edges[J].Journal of Rocket Propulsion,2018,44(05):1.
±¸×¢/Memo
ÊÕ¸åÈÕÆÚ:2017-04-11; ÐÞ»ØÈÕÆÚ:2017-05-17 »ù½ðÏîÄ¿:¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð(11702205) ×÷Õß¼ò½é: ÀîÓÀÖÞ(1984¡ª),ÄÐ,²©Ê¿,Ñо¿ÁìÓòΪ¸ß³¬ÉùËÙ×éºÏ·¢¶¯»úÉè¼Æ